mirror of
https://github.com/microsoft/autogen.git
synced 2025-09-27 09:09:18 +00:00
170 lines
6.1 KiB
Python
170 lines
6.1 KiB
Python
# This file is copied from NNI project
|
|
# https://github.com/microsoft/nni/blob/master/examples/trials/mnist-tfv1/mnist.py
|
|
|
|
"""
|
|
A deep MNIST classifier using convolutional layers.
|
|
|
|
This file is a modification of the official pytorch mnist example:
|
|
https://github.com/pytorch/examples/blob/master/mnist/main.py
|
|
"""
|
|
|
|
import os
|
|
import argparse
|
|
import logging
|
|
import nni
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import torch.optim as optim
|
|
from nni.utils import merge_parameter
|
|
from torchvision import datasets, transforms
|
|
|
|
logger = logging.getLogger('mnist_AutoML')
|
|
|
|
|
|
class Net(nn.Module):
|
|
def __init__(self, hidden_size):
|
|
super(Net, self).__init__()
|
|
self.conv1 = nn.Conv2d(1, 20, 5, 1)
|
|
self.conv2 = nn.Conv2d(20, 50, 5, 1)
|
|
self.fc1 = nn.Linear(4*4*50, hidden_size)
|
|
self.fc2 = nn.Linear(hidden_size, 10)
|
|
|
|
def forward(self, x):
|
|
x = F.relu(self.conv1(x))
|
|
x = F.max_pool2d(x, 2, 2)
|
|
x = F.relu(self.conv2(x))
|
|
x = F.max_pool2d(x, 2, 2)
|
|
x = x.view(-1, 4*4*50)
|
|
x = F.relu(self.fc1(x))
|
|
x = self.fc2(x)
|
|
return F.log_softmax(x, dim=1)
|
|
|
|
|
|
def train(args, model, device, train_loader, optimizer, epoch):
|
|
model.train()
|
|
for batch_idx, (data, target) in enumerate(train_loader):
|
|
if (args['batch_num'] is not None) and batch_idx >= args['batch_num']:
|
|
break
|
|
data, target = data.to(device), target.to(device)
|
|
optimizer.zero_grad()
|
|
output = model(data)
|
|
loss = F.nll_loss(output, target)
|
|
loss.backward()
|
|
optimizer.step()
|
|
if batch_idx % args['log_interval'] == 0:
|
|
logger.info('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
|
|
epoch, batch_idx * len(data), len(train_loader.dataset),
|
|
100. * batch_idx / len(train_loader), loss.item()))
|
|
|
|
|
|
def test(args, model, device, test_loader):
|
|
model.eval()
|
|
test_loss = 0
|
|
correct = 0
|
|
with torch.no_grad():
|
|
for data, target in test_loader:
|
|
data, target = data.to(device), target.to(device)
|
|
output = model(data)
|
|
# sum up batch loss
|
|
test_loss += F.nll_loss(output, target, reduction='sum').item()
|
|
# get the index of the max log-probability
|
|
pred = output.argmax(dim=1, keepdim=True)
|
|
correct += pred.eq(target.view_as(pred)).sum().item()
|
|
|
|
test_loss /= len(test_loader.dataset)
|
|
|
|
accuracy = 100. * correct / len(test_loader.dataset)
|
|
|
|
logger.info('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
|
|
test_loss, correct, len(test_loader.dataset), accuracy))
|
|
|
|
return accuracy
|
|
|
|
|
|
def main(args):
|
|
use_cuda = not args['no_cuda'] and torch.cuda.is_available()
|
|
|
|
torch.manual_seed(args['seed'])
|
|
|
|
device = torch.device("cuda" if use_cuda else "cpu")
|
|
|
|
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
|
|
|
|
data_dir = args['data_dir']
|
|
|
|
train_loader = torch.utils.data.DataLoader(
|
|
datasets.MNIST(data_dir, train=True, download=True,
|
|
transform=transforms.Compose([
|
|
transforms.ToTensor(),
|
|
transforms.Normalize((0.1307,), (0.3081,))
|
|
])),
|
|
batch_size=args['batch_size'], shuffle=True, **kwargs)
|
|
test_loader = torch.utils.data.DataLoader(
|
|
datasets.MNIST(data_dir, train=False, transform=transforms.Compose([
|
|
transforms.ToTensor(),
|
|
transforms.Normalize((0.1307,), (0.3081,))
|
|
])),
|
|
batch_size=1000, shuffle=True, **kwargs)
|
|
|
|
hidden_size = args['hidden_size']
|
|
|
|
model = Net(hidden_size=hidden_size).to(device)
|
|
optimizer = optim.SGD(model.parameters(), lr=args['lr'],
|
|
momentum=args['momentum'])
|
|
|
|
for epoch in range(1, args['epochs'] + 1):
|
|
train(args, model, device, train_loader, optimizer, epoch)
|
|
test_acc = test(args, model, device, test_loader)
|
|
|
|
# report intermediate result
|
|
nni.report_intermediate_result(test_acc)
|
|
logger.debug('test accuracy %g', test_acc)
|
|
logger.debug('Pipe send intermediate result done.')
|
|
|
|
# report final result
|
|
nni.report_final_result(test_acc)
|
|
logger.debug('Final result is %g', test_acc)
|
|
logger.debug('Send final result done.')
|
|
|
|
|
|
def get_params():
|
|
# Training settings
|
|
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
|
|
parser.add_argument("--data_dir", type=str,
|
|
default='./data', help="data directory")
|
|
parser.add_argument('--batch_size', type=int, default=64, metavar='N',
|
|
help='input batch size for training (default: 64)')
|
|
parser.add_argument("--batch_num", type=int, default=None)
|
|
parser.add_argument("--hidden_size", type=int, default=512, metavar='N',
|
|
help='hidden layer size (default: 512)')
|
|
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
|
|
help='learning rate (default: 0.01)')
|
|
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
|
|
help='SGD momentum (default: 0.5)')
|
|
parser.add_argument('--epochs', type=int, default=10, metavar='N',
|
|
help='number of epochs to train (default: 10)')
|
|
parser.add_argument('--seed', type=int, default=1, metavar='S',
|
|
help='random seed (default: 1)')
|
|
parser.add_argument('--no_cuda', action='store_true', default=False,
|
|
help='disables CUDA training')
|
|
parser.add_argument('--log_interval', type=int, default=1000, metavar='N',
|
|
help='how many batches to wait before logging training status')
|
|
|
|
|
|
args, _ = parser.parse_known_args()
|
|
return args
|
|
|
|
|
|
if __name__ == '__main__':
|
|
try:
|
|
# get parameters form tuner
|
|
tuner_params = nni.get_next_parameter()
|
|
logger.debug(tuner_params)
|
|
params = vars(merge_parameter(get_params(), tuner_params))
|
|
print(params)
|
|
main(params)
|
|
except Exception as exception:
|
|
logger.exception(exception)
|
|
raise
|