Chi Wang 904b293aa4
make retry_time configurable, add doc (#53)
* make retry_time configurable, add doc

* in seconds

* retry_wait_time

* bump version to 0.1.4

* remove .json

* rename

* time
2023-09-30 16:21:07 +00:00

112 lines
4.4 KiB
Markdown

# Frequently Asked Questions
## Set your API endpoints
There are multiple ways to construct a list of configurations for LLM inference.
### Option 1: Load a list of endpoints from json
The [`config_list_from_json`](/docs/reference/oai/openai_utils#config_list_from_json) function loads a list of configurations from an environment variable or a json file.
For example,
```python
import autogen
config_list = autogen.config_list_from_json(
"OAI_CONFIG_LIST",
file_location=".",
filter_dict={
"model": {
"gpt-4",
"gpt-3.5-turbo",
}
}
)
```
It first looks for environment variable "OAI_CONFIG_LIST" which needs to be a valid json string. If that variable is not found, it then looks for a json file named "OAI_CONFIG_LIST" under the specified `file_location`. It then filters the configs by models (you can filter by other keys as well).
The `OAI_CONFIG_LIST` var or file content looks like the following:
```json
[
{
"model": "gpt-4",
"api_key": "<your OpenAI API key here>"
},
{
"model": "gpt-4",
"api_key": "<your Azure OpenAI API key here>",
"api_base": "<your Azure OpenAI API base here>",
"api_type": "azure",
"api_version": "2023-07-01-preview"
},
{
"model": "gpt-3.5-turbo",
"api_key": "<your Azure OpenAI API key here>",
"api_base": "<your Azure OpenAI API base here>",
"api_type": "azure",
"api_version": "2023-07-01-preview"
}
]
```
### Option 2: Construct a list of endpoints for OpenAI or Azure OpenAI
The [`config_list_from_models`](/docs/reference/oai/openai_utils#config_list_from_models) function tries to create a list of configurations using Azure OpenAI endpoints and OpenAI endpoints for the provided list of models. It assumes the api keys and api bases are stored in the corresponding environment variables or local txt files:
- OpenAI API key: os.environ["OPENAI_API_KEY"] or `openai_api_key_file="key_openai.txt"`.
- Azure OpenAI API key: os.environ["AZURE_OPENAI_API_KEY"] or `aoai_api_key_file="key_aoai.txt"`. Multiple keys can be stored, one per line.
- Azure OpenAI API base: os.environ["AZURE_OPENAI_API_BASE"] or `aoai_api_base_file="base_aoai.txt"`. Multiple bases can be stored, one per line.
It's OK to have only the OpenAI API key, or only the Azure OpenAI API key + base.
```python
import autogen
config_list = autogen.config_list_from_models(model_list=["gpt-4", "gpt-3.5-turbo", "gpt-3.5-turbo-16k"])
```
The config list looks like the following, if only OpenAI API key is available:
```python
config_list = [
{
'model': 'gpt-4',
'api_key': '<your OpenAI API key here>',
}, # OpenAI API endpoint for gpt-4
{
'model': 'gpt-3.5-turbo',
'api_key': '<your OpenAI API key here>',
}, # OpenAI API endpoint for gpt-3.5-turbo
{
'model': 'gpt-3.5-turbo-16k',
'api_key': '<your OpenAI API key here>',
}, # OpenAI API endpoint for gpt-3.5-turbo-16k
]
```
### Use the constructed configuration list in agents
Make sure the "config_list" is included in the `llm_config` in the constructor of the LLM-based agent. For example,
```python
assistant = autogen.AssistantAgent(
name="assistant",
llm_config={"config_list": config_list}
)
```
The `llm_config` is used in the [`create`](/docs/reference/oai/completion#create) function for LLM inference.
When `llm_config` is not provided, the agent will rely on other openai settings such as `openai.api_key` or the environment variable `OPENAI_API_KEY`, which can also work when you'd like to use a single endpoint.
You can also explicitly specify that by:
```python
assistant = autogen.AssistantAgent(name="assistant", llm_config={"api_key": ...})
```
## Handle Rate Limit Error and Timeout Error
You can set `retry_wait_time` and `max_retry_period` to handle rate limit error. And you can set `request_timeout` to handle timeout error. They can all be specified in `llm_config` for an agent, which will be used in the [`create`](/docs/reference/oai/completion#create) function for LLM inference.
- `retry_wait_time` (int): the time interval to wait (in seconds) before retrying a failed request.
- `max_retry_period` (int): the total timeout (in seconds) allowed for retrying failed requests.
- `request_timeout` (int): the timeout (in seconds) sent with a single request.
Please refer to the [documentation](/docs/Use-Cases/enhanced_inference#runtime-error) for more info.