mirror of
https://github.com/microsoft/autogen.git
synced 2025-09-23 23:24:18 +00:00

A new documentation website. And: * add actions for doc * update docstr * installation instructions for doc dev * unify README and Getting Started * rename notebook * doc about best_model_for_estimator #340 * docstr for keep_search_state #340 * DNN Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu> Co-authored-by: Z.sk <shaokunzhang@psu.edu>
38 lines
1.3 KiB
Python
38 lines
1.3 KiB
Python
import time
|
|
from azureml.core import Workspace, Experiment, ScriptRunConfig, Environment
|
|
|
|
ws = Workspace.from_config()
|
|
ray_environment_name = "aml-ray-cpu"
|
|
ray_environment_dockerfile_path = "./Docker/Dockerfile-cpu"
|
|
|
|
# Build CPU image for Ray
|
|
ray_cpu_env = Environment.from_dockerfile(
|
|
name=ray_environment_name, dockerfile=ray_environment_dockerfile_path
|
|
)
|
|
ray_cpu_env.register(workspace=ws)
|
|
ray_cpu_build_details = ray_cpu_env.build(workspace=ws)
|
|
|
|
while ray_cpu_build_details.status not in ["Succeeded", "Failed"]:
|
|
print(
|
|
f"Awaiting completion of ray CPU environment build. Current status is: {ray_cpu_build_details.status}"
|
|
)
|
|
time.sleep(10)
|
|
|
|
env = Environment.get(workspace=ws, name=ray_environment_name)
|
|
compute_target = ws.compute_targets["cpucluster"]
|
|
command = ["python automl.py"]
|
|
config = ScriptRunConfig(
|
|
source_directory="ray/",
|
|
command=command,
|
|
compute_target=compute_target,
|
|
environment=env,
|
|
)
|
|
config.run_config.node_count = 2
|
|
config.run_config.environment_variables["_AZUREML_CR_START_RAY"] = "true"
|
|
config.run_config.environment_variables["AZUREML_COMPUTE_USE_COMMON_RUNTIME"] = "true"
|
|
|
|
exp = Experiment(ws, "test-ray")
|
|
run = exp.submit(config)
|
|
print(run.get_portal_url()) # link to ml.azure.com
|
|
run.wait_for_completion(show_output=True)
|