Chi Wang 72caa2172d
model_history, ITER_HP, settings in AutoML(), checkpoint bug fix (#283)
if save_best_model_per_estimator is False and retrain_final is True, unfit the model after evaluation in HPO.
retrain if using ray.
update ITER_HP in config after a trial is finished.
change prophet logging level.
example and notebook update.
allow settings to be passed to AutoML constructor. Are you planning to add multi-output-regression capability to FLAML #192 Is multi-tasking allowed? #277 can pass the auotml setting to the constructor instead of requiring a derived class.
remove model_history.
checkpoint bug fix.

* model_history meaning save_best_model_per_estimator

* ITER_HP

* example update

* prophet logging level

* comment update in forecast notebook

* print format improvement

* allow settings to be passed to AutoML constructor

* checkpoint bug fix

* time limit for autohf regression test

* skip slow test on macos

* cleanup before del
2021-11-18 09:39:45 -08:00

32 lines
1.2 KiB
Python

import os
try:
from transformers import Trainer as TFTrainer
except ImportError:
TFTrainer = object
class TrainerForAuto(TFTrainer):
def evaluate(self, eval_dataset=None, ignore_keys=None, metric_key_prefix="eval"):
"""Overriding transformers.Trainer.evaluate by saving metrics and checkpoint path"""
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
ckpt_dir = os.path.join(
self.args.output_dir, f"{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}"
)
eval_dataset = eval_dataset if eval_dataset is not None else self.eval_dataset
metrics = eval_dataset and super().evaluate(
eval_dataset, ignore_keys, metric_key_prefix
)
if metrics:
for key in list(metrics.keys()):
if key.startswith("eval_"):
metrics[key[5:]] = metrics.pop(key)
if hasattr(self, "ckpt_to_global_step"):
self.ckpt_to_global_step[ckpt_dir] = self.state.global_step
if metrics:
self.ckpt_to_metric[ckpt_dir] = metrics
else:
self.ckpt_to_global_step = {ckpt_dir: self.state.global_step}
self.ckpt_to_metric = {ckpt_dir: metrics} if metrics else {}