autogen/test/nlp/test_autohf.py
Xueqing Liu fd136b02d1
bug fix for TransformerEstimator (#293)
* fix checkpoint naming + trial id for non-ray mode, fix the bug in running test mode, delete all the checkpoints in non-ray mode

* finished testing for checkpoint naming, delete checkpoint, ray, max iter = 1

* adding predict_proba, address PR 293's comments

close #293 #291
2021-11-23 11:26:39 -08:00

128 lines
3.1 KiB
Python

import os
import pytest
@pytest.mark.skipif(os.name == "posix", reason="do not run on mac os")
def test_hf_data():
from flaml import AutoML
from datasets import load_dataset
train_dataset = (
load_dataset("glue", "mrpc", split="train[:1%]").to_pandas().iloc[0:4]
)
dev_dataset = (
load_dataset("glue", "mrpc", split="train[1%:2%]").to_pandas().iloc[0:4]
)
test_dataset = (
load_dataset("glue", "mrpc", split="test[1%:2%]").to_pandas().iloc[0:4]
)
custom_sent_keys = ["sentence1", "sentence2"]
label_key = "label"
X_train = train_dataset[custom_sent_keys]
y_train = train_dataset[label_key]
X_val = dev_dataset[custom_sent_keys]
y_val = dev_dataset[label_key]
X_test = test_dataset[custom_sent_keys]
automl = AutoML()
automl_settings = {
"gpu_per_trial": 0,
"max_iter": 3,
"time_budget": 5,
"task": "seq-classification",
"metric": "accuracy",
"log_file_name": "seqclass.log",
}
automl_settings["custom_hpo_args"] = {
"model_path": "google/electra-small-discriminator",
"output_dir": "test/data/output/",
"ckpt_per_epoch": 5,
"fp16": False,
}
automl.fit(
X_train=X_train, y_train=y_train, X_val=X_val, y_val=y_val, **automl_settings
)
automl = AutoML()
automl.retrain_from_log(
X_train=X_train,
y_train=y_train,
train_full=True,
record_id=0,
**automl_settings
)
automl.predict(X_test)
automl.predict(["test test", "test test"])
automl.predict(
[
["test test", "test test"],
["test test", "test test"],
["test test", "test test"],
]
)
automl.predict_proba(X_test)
print(automl.classes_)
def _test_custom_data():
from flaml import AutoML
import pandas as pd
train_dataset = pd.read_csv("data/input/train.tsv", delimiter="\t", quoting=3)
dev_dataset = pd.read_csv("data/input/dev.tsv", delimiter="\t", quoting=3)
test_dataset = pd.read_csv("data/input/test.tsv", delimiter="\t", quoting=3)
custom_sent_keys = ["#1 String", "#2 String"]
label_key = "Quality"
X_train = train_dataset[custom_sent_keys]
y_train = train_dataset[label_key]
X_val = dev_dataset[custom_sent_keys]
y_val = dev_dataset[label_key]
X_test = test_dataset[custom_sent_keys]
automl = AutoML()
automl_settings = {
"gpu_per_trial": 0,
"max_iter": 10,
"time_budget": 300,
"task": "seq-classification",
"metric": "accuracy",
}
automl_settings["custom_hpo_args"] = {
"model_path": "google/electra-small-discriminator",
"output_dir": "data/output/",
"ckpt_per_epoch": 1,
}
automl.fit(
X_train=X_train, y_train=y_train, X_val=X_val, y_val=y_val, **automl_settings
)
automl.predict(X_test)
automl.predict(["test test"])
automl.predict(
[
["test test", "test test"],
["test test", "test test"],
["test test", "test test"],
]
)
if __name__ == "__main__":
test_hf_data()