autogen/test/nlp/test_autohf_cv.py
Chi Wang 72caa2172d
model_history, ITER_HP, settings in AutoML(), checkpoint bug fix (#283)
if save_best_model_per_estimator is False and retrain_final is True, unfit the model after evaluation in HPO.
retrain if using ray.
update ITER_HP in config after a trial is finished.
change prophet logging level.
example and notebook update.
allow settings to be passed to AutoML constructor. Are you planning to add multi-output-regression capability to FLAML #192 Is multi-tasking allowed? #277 can pass the auotml setting to the constructor instead of requiring a derived class.
remove model_history.
checkpoint bug fix.

* model_history meaning save_best_model_per_estimator

* ITER_HP

* example update

* prophet logging level

* comment update in forecast notebook

* print format improvement

* allow settings to be passed to AutoML constructor

* checkpoint bug fix

* time limit for autohf regression test

* skip slow test on macos

* cleanup before del
2021-11-18 09:39:45 -08:00

40 lines
945 B
Python

import os
import pytest
@pytest.mark.skipif(os.name == "posix", reason="do not run on mac os")
def test_cv():
from flaml import AutoML
from datasets import load_dataset
train_dataset = (
load_dataset("glue", "mrpc", split="train[:1%]").to_pandas().iloc[0:4]
)
custom_sent_keys = ["sentence1", "sentence2"]
label_key = "label"
X_train = train_dataset[custom_sent_keys]
y_train = train_dataset[label_key]
automl = AutoML()
automl_settings = {
"gpu_per_trial": 0,
"max_iter": 3,
"time_budget": 5,
"task": "seq-classification",
"metric": "accuracy",
"n_splits": 3,
}
automl_settings["custom_hpo_args"] = {
"model_path": "google/electra-small-discriminator",
"output_dir": "test/data/output/",
"ckpt_per_epoch": 1,
"fp16": False,
}
automl.fit(X_train=X_train, y_train=y_train, **automl_settings)