mirror of
https://github.com/microsoft/autogen.git
synced 2025-07-27 10:50:06 +00:00

A new documentation website. And: * add actions for doc * update docstr * installation instructions for doc dev * unify README and Getting Started * rename notebook * doc about best_model_for_estimator #340 * docstr for keep_search_state #340 * DNN Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu> Co-authored-by: Z.sk <shaokunzhang@psu.edu>
165 lines
4.5 KiB
Python
165 lines
4.5 KiB
Python
from sklearn.datasets import fetch_openml
|
|
from flaml.automl import AutoML
|
|
from sklearn.model_selection import train_test_split, KFold
|
|
from sklearn.metrics import accuracy_score
|
|
|
|
|
|
dataset = "credit-g"
|
|
|
|
|
|
def _test(split_type):
|
|
from sklearn.externals._arff import ArffException
|
|
|
|
automl = AutoML()
|
|
|
|
automl_settings = {
|
|
"time_budget": 2,
|
|
# "metric": 'accuracy',
|
|
"task": "classification",
|
|
"log_file_name": "test/{}.log".format(dataset),
|
|
"model_history": True,
|
|
"log_training_metric": True,
|
|
"split_type": split_type,
|
|
}
|
|
|
|
try:
|
|
X, y = fetch_openml(name=dataset, return_X_y=True)
|
|
except (ArffException, ValueError):
|
|
from sklearn.datasets import load_wine
|
|
|
|
X, y = load_wine(return_X_y=True)
|
|
if split_type != "time":
|
|
X_train, X_test, y_train, y_test = train_test_split(
|
|
X, y, test_size=0.33, random_state=42
|
|
)
|
|
else:
|
|
X_train, X_test, y_train, y_test = train_test_split(
|
|
X, y, test_size=0.33, shuffle=False
|
|
)
|
|
automl.fit(X_train=X_train, y_train=y_train, **automl_settings)
|
|
|
|
pred = automl.predict(X_test)
|
|
acc = accuracy_score(y_test, pred)
|
|
|
|
print(acc)
|
|
|
|
|
|
def _test_uniform():
|
|
_test(split_type="uniform")
|
|
|
|
|
|
def test_time():
|
|
_test(split_type="time")
|
|
|
|
|
|
def test_groups():
|
|
from sklearn.externals._arff import ArffException
|
|
|
|
try:
|
|
X, y = fetch_openml(name=dataset, return_X_y=True)
|
|
except (ArffException, ValueError):
|
|
from sklearn.datasets import load_wine
|
|
|
|
X, y = load_wine(return_X_y=True)
|
|
|
|
import numpy as np
|
|
|
|
automl = AutoML()
|
|
automl_settings = {
|
|
"time_budget": 2,
|
|
"task": "classification",
|
|
"log_file_name": "test/{}.log".format(dataset),
|
|
"model_history": True,
|
|
"eval_method": "cv",
|
|
"groups": np.random.randint(low=0, high=10, size=len(y)),
|
|
"estimator_list": ["lgbm", "rf", "xgboost", "kneighbor"],
|
|
"learner_selector": "roundrobin",
|
|
}
|
|
automl.fit(X, y, **automl_settings)
|
|
|
|
automl_settings["eval_method"] = "holdout"
|
|
automl.fit(X, y, **automl_settings)
|
|
|
|
|
|
def test_rank():
|
|
from sklearn.externals._arff import ArffException
|
|
|
|
try:
|
|
X, y = fetch_openml(name=dataset, return_X_y=True)
|
|
y = y.cat.codes
|
|
except (ArffException, ValueError):
|
|
from sklearn.datasets import load_wine
|
|
|
|
X, y = load_wine(return_X_y=True)
|
|
import numpy as np
|
|
|
|
automl = AutoML()
|
|
automl_settings = {
|
|
"time_budget": 2,
|
|
"task": "rank",
|
|
"log_file_name": "test/{}.log".format(dataset),
|
|
"model_history": True,
|
|
"eval_method": "cv",
|
|
"groups": np.array( # group labels
|
|
[0] * 200 + [1] * 200 + [2] * 200 + [3] * 200 + [4] * 100 + [5] * 100
|
|
),
|
|
"learner_selector": "roundrobin",
|
|
}
|
|
automl.fit(X, y, **automl_settings)
|
|
|
|
automl = AutoML()
|
|
automl_settings = {
|
|
"time_budget": 2,
|
|
"task": "rank",
|
|
"metric": "ndcg@5", # 5 can be replaced by any number
|
|
"log_file_name": "test/{}.log".format(dataset),
|
|
"model_history": True,
|
|
"groups": [200] * 4 + [100] * 2, # alternative way: group counts
|
|
# "estimator_list": ['lgbm', 'xgboost'], # list of ML learners
|
|
"learner_selector": "roundrobin",
|
|
}
|
|
automl.fit(X, y, **automl_settings)
|
|
|
|
|
|
def test_object():
|
|
from sklearn.externals._arff import ArffException
|
|
|
|
try:
|
|
X, y = fetch_openml(name=dataset, return_X_y=True)
|
|
except (ArffException, ValueError):
|
|
from sklearn.datasets import load_wine
|
|
|
|
X, y = load_wine(return_X_y=True)
|
|
|
|
import numpy as np
|
|
|
|
class TestKFold(KFold):
|
|
def __init__(self, n_splits):
|
|
self.n_splits = int(n_splits)
|
|
|
|
def split(self, X):
|
|
rng = np.random.default_rng()
|
|
train_num = int(len(X) * 0.8)
|
|
for _ in range(self.n_splits):
|
|
permu_idx = rng.permutation(len(X))
|
|
yield permu_idx[:train_num], permu_idx[train_num:]
|
|
|
|
def get_n_splits(self, X=None, y=None, groups=None):
|
|
return self.n_splits
|
|
|
|
automl = AutoML()
|
|
automl_settings = {
|
|
"time_budget": 2,
|
|
# "metric": 'accuracy',
|
|
"task": "classification",
|
|
"log_file_name": "test/{}.log".format(dataset),
|
|
"model_history": True,
|
|
"log_training_metric": True,
|
|
"split_type": TestKFold(5),
|
|
}
|
|
automl.fit(X, y, **automl_settings)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_groups()
|