mirror of
https://github.com/microsoft/autogen.git
synced 2025-07-11 19:11:39 +00:00

* add sklearn regressors as learners for ts_forecast task * add direct forecasting strategy warnings and errors for duplicate rows and missing values - add preprocess for sklearn time series forecast update automl.py update test/test_forecast.py * update model.py and test_forecast.py for cv eval_method * add "hcrystalball" dependency in setup.py * update automl.py - add _validate_ts_data function for abstraction - include xgb_limitdepth as a learner * update model.py - update search space for sklearn ts regressors * update automl.py and test_forecast.py for numpy array inputs * add documentations to model.py * add documentation for removing catboost regressor * update automl.py - _validate_ts_data() function Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>
100 lines
2.6 KiB
Python
100 lines
2.6 KiB
Python
import setuptools
|
|
import os
|
|
|
|
here = os.path.abspath(os.path.dirname(__file__))
|
|
|
|
with open("README.md", "r", encoding="UTF-8") as fh:
|
|
long_description = fh.read()
|
|
|
|
|
|
# Get the code version
|
|
version = {}
|
|
with open(os.path.join(here, "flaml/version.py")) as fp:
|
|
exec(fp.read(), version)
|
|
__version__ = version["__version__"]
|
|
|
|
install_requires = [
|
|
"NumPy>=1.16.2",
|
|
"lightgbm>=2.3.1",
|
|
"xgboost>=0.90,<=1.3.3",
|
|
"scipy>=1.4.1",
|
|
"pandas>=1.1.4",
|
|
"scikit-learn>=0.24",
|
|
]
|
|
|
|
|
|
setuptools.setup(
|
|
name="FLAML",
|
|
version=__version__,
|
|
author="Microsoft Corporation",
|
|
author_email="hpo@microsoft.com",
|
|
description="A fast library for automated machine learning and tuning",
|
|
long_description=long_description,
|
|
long_description_content_type="text/markdown",
|
|
url="https://github.com/microsoft/FLAML",
|
|
packages=setuptools.find_packages(include=["flaml*"]),
|
|
install_requires=install_requires,
|
|
extras_require={
|
|
"notebook": [
|
|
"openml==0.10.2",
|
|
"jupyter",
|
|
"matplotlib",
|
|
"rgf-python",
|
|
"catboost>=0.26",
|
|
],
|
|
"test": [
|
|
"flake8>=3.8.4",
|
|
"pytest>=6.1.1",
|
|
"coverage>=5.3",
|
|
"pre-commit",
|
|
"catboost>=0.26",
|
|
"rgf-python",
|
|
"optuna==2.8.0",
|
|
"vowpalwabbit",
|
|
"openml",
|
|
"statsmodels>=0.12.2",
|
|
"psutil==5.8.0",
|
|
"dataclasses",
|
|
"transformers>=4.14",
|
|
"datasets",
|
|
"torch",
|
|
"nltk",
|
|
"rouge_score",
|
|
"hcrystalball==0.1.10",
|
|
"seqeval",
|
|
],
|
|
"catboost": ["catboost>=0.26"],
|
|
"blendsearch": ["optuna==2.8.0"],
|
|
"ray": [
|
|
"ray[tune]==1.6.0",
|
|
"pyyaml<5.3.1",
|
|
],
|
|
"azureml": [
|
|
"azureml-mlflow",
|
|
],
|
|
"nni": [
|
|
"nni",
|
|
],
|
|
"vw": [
|
|
"vowpalwabbit",
|
|
],
|
|
"nlp": [
|
|
"transformers>=4.14",
|
|
"datasets",
|
|
"torch",
|
|
"seqeval",
|
|
"nltk",
|
|
"rouge_score",
|
|
],
|
|
"ts_forecast": ["prophet>=1.0.1", "statsmodels>=0.12.2", "hcrystalball==0.1.10"],
|
|
"forecast": ["prophet>=1.0.1", "statsmodels>=0.12.2", "hcrystalball==0.1.10"],
|
|
"benchmark": ["catboost>=0.26", "psutil==5.8.0", "xgboost==1.3.3"],
|
|
},
|
|
classifiers=[
|
|
"Programming Language :: Python :: 3",
|
|
"License :: OSI Approved :: MIT License",
|
|
"Operating System :: OS Independent",
|
|
],
|
|
python_requires=">=3.6",
|
|
)
|