mirror of
https://github.com/microsoft/autogen.git
synced 2025-09-19 13:14:27 +00:00
22 lines
1.5 KiB
Markdown
22 lines
1.5 KiB
Markdown
# Research
|
|
|
|
For technical details, please check our research publications.
|
|
|
|
* [FLAML: A Fast and Lightweight AutoML Library](https://www.microsoft.com/en-us/research/publication/flaml-a-fast-and-lightweight-automl-library/). Chi Wang, Qingyun Wu, Markus Weimer, Erkang Zhu. MLSys 2021.
|
|
|
|
```bibtex
|
|
@inproceedings{wang2021flaml,
|
|
title={FLAML: A Fast and Lightweight AutoML Library},
|
|
author={Chi Wang and Qingyun Wu and Markus Weimer and Erkang Zhu},
|
|
year={2021},
|
|
booktitle={MLSys},
|
|
}
|
|
```
|
|
|
|
* [Frugal Optimization for Cost-related Hyperparameters](https://arxiv.org/abs/2005.01571). Qingyun Wu, Chi Wang, Silu Huang. AAAI 2021.
|
|
* [Economical Hyperparameter Optimization With Blended Search Strategy](https://www.microsoft.com/en-us/research/publication/economical-hyperparameter-optimization-with-blended-search-strategy/). Chi Wang, Qingyun Wu, Silu Huang, Amin Saied. ICLR 2021.
|
|
* [An Empirical Study on Hyperparameter Optimization for Fine-Tuning Pre-trained Language Models](https://aclanthology.org/2021.acl-long.178.pdf). Susan Xueqing Liu, Chi Wang. ACL 2021.
|
|
* [ChaCha for Online AutoML](https://www.microsoft.com/en-us/research/publication/chacha-for-online-automl/). Qingyun Wu, Chi Wang, John Langford, Paul Mineiro and Marco Rossi. ICML 2021.
|
|
* [Fair AutoML](https://arxiv.org/abs/2111.06495). Qingyun Wu, Chi Wang. ArXiv preprint arXiv:2111.06495 (2021).
|
|
* [Mining Robust Default Configurations for Resource-constrained AutoML](https://arxiv.org/abs/2202.09927). Moe Kayali, Chi Wang. ArXiv preprint arXiv:2202.09927 (2022).
|