mirror of
https://github.com/microsoft/autogen.git
synced 2025-07-05 08:01:20 +00:00

* fix: use tool_calls field to detect tool calls in OpenAI client * Add unit tests for tool calling; and integration tests for openai and gemini
758 lines
29 KiB
Python
758 lines
29 KiB
Python
import asyncio
|
|
import json
|
|
import os
|
|
from typing import Annotated, Any, AsyncGenerator, Dict, Generic, List, Literal, Tuple, TypeVar
|
|
from unittest.mock import MagicMock
|
|
|
|
import pytest
|
|
from autogen_core import CancellationToken, FunctionCall, Image
|
|
from autogen_core.models import (
|
|
AssistantMessage,
|
|
CreateResult,
|
|
FunctionExecutionResult,
|
|
FunctionExecutionResultMessage,
|
|
LLMMessage,
|
|
RequestUsage,
|
|
SystemMessage,
|
|
UserMessage,
|
|
)
|
|
from autogen_core.models._model_client import ModelFamily
|
|
from autogen_core.tools import BaseTool, FunctionTool
|
|
from autogen_ext.models.openai import AzureOpenAIChatCompletionClient, OpenAIChatCompletionClient
|
|
from autogen_ext.models.openai._model_info import resolve_model
|
|
from autogen_ext.models.openai._openai_client import calculate_vision_tokens, convert_tools
|
|
from openai.resources.beta.chat.completions import AsyncCompletions as BetaAsyncCompletions
|
|
from openai.resources.chat.completions import AsyncCompletions
|
|
from openai.types.chat.chat_completion import ChatCompletion, Choice
|
|
from openai.types.chat.chat_completion_chunk import ChatCompletionChunk, ChoiceDelta
|
|
from openai.types.chat.chat_completion_chunk import Choice as ChunkChoice
|
|
from openai.types.chat.chat_completion_message import ChatCompletionMessage
|
|
from openai.types.chat.chat_completion_message_tool_call import (
|
|
ChatCompletionMessageToolCall,
|
|
Function,
|
|
)
|
|
from openai.types.chat.parsed_chat_completion import ParsedChatCompletion, ParsedChatCompletionMessage, ParsedChoice
|
|
from openai.types.completion_usage import CompletionUsage
|
|
from pydantic import BaseModel, Field
|
|
|
|
|
|
class _MockChatCompletion:
|
|
def __init__(self, chat_completions: List[ChatCompletion]) -> None:
|
|
self._saved_chat_completions = chat_completions
|
|
self.curr_index = 0
|
|
self.calls: List[Dict[str, Any]] = []
|
|
|
|
async def mock_create(
|
|
self, *args: Any, **kwargs: Any
|
|
) -> ChatCompletion | AsyncGenerator[ChatCompletionChunk, None]:
|
|
self.calls.append(kwargs) # Save the call
|
|
await asyncio.sleep(0.1)
|
|
completion = self._saved_chat_completions[self.curr_index]
|
|
self.curr_index += 1
|
|
return completion
|
|
|
|
|
|
ResponseFormatT = TypeVar("ResponseFormatT", bound=BaseModel)
|
|
|
|
|
|
class _MockBetaChatCompletion(Generic[ResponseFormatT]):
|
|
def __init__(self, chat_completions: List[ParsedChatCompletion[ResponseFormatT]]) -> None:
|
|
self._saved_chat_completions = chat_completions
|
|
self.curr_index = 0
|
|
self.calls: List[Dict[str, Any]] = []
|
|
|
|
async def mock_parse(
|
|
self,
|
|
*args: Any,
|
|
**kwargs: Any,
|
|
) -> ParsedChatCompletion[ResponseFormatT]:
|
|
self.calls.append(kwargs) # Save the call
|
|
await asyncio.sleep(0.1)
|
|
completion = self._saved_chat_completions[self.curr_index]
|
|
self.curr_index += 1
|
|
return completion
|
|
|
|
|
|
def _pass_function(input: str) -> str:
|
|
return "pass"
|
|
|
|
|
|
async def _fail_function(input: str) -> str:
|
|
return "fail"
|
|
|
|
|
|
async def _echo_function(input: str) -> str:
|
|
return input
|
|
|
|
|
|
class MyResult(BaseModel):
|
|
result: str = Field(description="The other description.")
|
|
|
|
|
|
class MyArgs(BaseModel):
|
|
query: str = Field(description="The description.")
|
|
|
|
|
|
class MockChunkDefinition(BaseModel):
|
|
# defining elements for diffentiating mocking chunks
|
|
chunk_choice: ChunkChoice
|
|
usage: CompletionUsage | None
|
|
|
|
|
|
async def _mock_create_stream(*args: Any, **kwargs: Any) -> AsyncGenerator[ChatCompletionChunk, None]:
|
|
model = resolve_model(kwargs.get("model", "gpt-4o"))
|
|
mock_chunks_content = ["Hello", " Another Hello", " Yet Another Hello"]
|
|
|
|
# The openai api implementations (OpenAI and Litellm) stream chunks of tokens
|
|
# with content as string, and then at the end a token with stop set and finally if
|
|
# usage requested with `"stream_options": {"include_usage": True}` a chunk with the usage data
|
|
mock_chunks = [
|
|
# generate the list of mock chunk content
|
|
MockChunkDefinition(
|
|
chunk_choice=ChunkChoice(
|
|
finish_reason=None,
|
|
index=0,
|
|
delta=ChoiceDelta(
|
|
content=mock_chunk_content,
|
|
role="assistant",
|
|
),
|
|
),
|
|
usage=None,
|
|
)
|
|
for mock_chunk_content in mock_chunks_content
|
|
] + [
|
|
# generate the stop chunk
|
|
MockChunkDefinition(
|
|
chunk_choice=ChunkChoice(
|
|
finish_reason="stop",
|
|
index=0,
|
|
delta=ChoiceDelta(
|
|
content=None,
|
|
role="assistant",
|
|
),
|
|
),
|
|
usage=None,
|
|
)
|
|
]
|
|
# generate the usage chunk if configured
|
|
if kwargs.get("stream_options", {}).get("include_usage") is True:
|
|
mock_chunks = mock_chunks + [
|
|
# ---- API differences
|
|
# OPENAI API does NOT create a choice
|
|
# LITELLM (proxy) DOES create a choice
|
|
# Not simulating all the API options, just implementing the LITELLM variant
|
|
MockChunkDefinition(
|
|
chunk_choice=ChunkChoice(
|
|
finish_reason=None,
|
|
index=0,
|
|
delta=ChoiceDelta(
|
|
content=None,
|
|
role="assistant",
|
|
),
|
|
),
|
|
usage=CompletionUsage(prompt_tokens=3, completion_tokens=3, total_tokens=6),
|
|
)
|
|
]
|
|
elif kwargs.get("stream_options", {}).get("include_usage") is False:
|
|
pass
|
|
else:
|
|
pass
|
|
|
|
for mock_chunk in mock_chunks:
|
|
await asyncio.sleep(0.1)
|
|
yield ChatCompletionChunk(
|
|
id="id",
|
|
choices=[mock_chunk.chunk_choice],
|
|
created=0,
|
|
model=model,
|
|
object="chat.completion.chunk",
|
|
usage=mock_chunk.usage,
|
|
)
|
|
|
|
|
|
async def _mock_create(*args: Any, **kwargs: Any) -> ChatCompletion | AsyncGenerator[ChatCompletionChunk, None]:
|
|
stream = kwargs.get("stream", False)
|
|
model = resolve_model(kwargs.get("model", "gpt-4o"))
|
|
if not stream:
|
|
await asyncio.sleep(0.1)
|
|
return ChatCompletion(
|
|
id="id",
|
|
choices=[
|
|
Choice(finish_reason="stop", index=0, message=ChatCompletionMessage(content="Hello", role="assistant"))
|
|
],
|
|
created=0,
|
|
model=model,
|
|
object="chat.completion",
|
|
usage=CompletionUsage(prompt_tokens=0, completion_tokens=0, total_tokens=0),
|
|
)
|
|
else:
|
|
return _mock_create_stream(*args, **kwargs)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_openai_chat_completion_client() -> None:
|
|
client = OpenAIChatCompletionClient(model="gpt-4o", api_key="api_key")
|
|
assert client
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_custom_model_with_capabilities() -> None:
|
|
with pytest.raises(ValueError, match="model_info is required"):
|
|
client = OpenAIChatCompletionClient(model="dummy_model", base_url="https://api.dummy.com/v0", api_key="api_key")
|
|
|
|
client = OpenAIChatCompletionClient(
|
|
model="dummy_model",
|
|
base_url="https://api.dummy.com/v0",
|
|
api_key="api_key",
|
|
model_info={"vision": False, "function_calling": False, "json_output": False, "family": ModelFamily.UNKNOWN},
|
|
)
|
|
assert client
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_azure_openai_chat_completion_client() -> None:
|
|
client = AzureOpenAIChatCompletionClient(
|
|
azure_deployment="gpt-4o-1",
|
|
model="gpt-4o",
|
|
api_key="api_key",
|
|
api_version="2020-08-04",
|
|
azure_endpoint="https://dummy.com",
|
|
model_info={"vision": True, "function_calling": True, "json_output": True, "family": ModelFamily.GPT_4O},
|
|
)
|
|
assert client
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_openai_chat_completion_client_create(monkeypatch: pytest.MonkeyPatch) -> None:
|
|
monkeypatch.setattr(AsyncCompletions, "create", _mock_create)
|
|
client = OpenAIChatCompletionClient(model="gpt-4o", api_key="api_key")
|
|
result = await client.create(messages=[UserMessage(content="Hello", source="user")])
|
|
assert result.content == "Hello"
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_openai_chat_completion_client_create_stream_with_usage(monkeypatch: pytest.MonkeyPatch) -> None:
|
|
monkeypatch.setattr(AsyncCompletions, "create", _mock_create)
|
|
client = OpenAIChatCompletionClient(model="gpt-4o", api_key="api_key")
|
|
chunks: List[str | CreateResult] = []
|
|
async for chunk in client.create_stream(
|
|
messages=[UserMessage(content="Hello", source="user")],
|
|
# include_usage not the default of the OPENAI API and must be explicitly set
|
|
extra_create_args={"stream_options": {"include_usage": True}},
|
|
):
|
|
chunks.append(chunk)
|
|
assert chunks[0] == "Hello"
|
|
assert chunks[1] == " Another Hello"
|
|
assert chunks[2] == " Yet Another Hello"
|
|
assert isinstance(chunks[-1], CreateResult)
|
|
assert chunks[-1].content == "Hello Another Hello Yet Another Hello"
|
|
assert chunks[-1].usage == RequestUsage(prompt_tokens=3, completion_tokens=3)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_openai_chat_completion_client_create_stream_no_usage_default(monkeypatch: pytest.MonkeyPatch) -> None:
|
|
monkeypatch.setattr(AsyncCompletions, "create", _mock_create)
|
|
client = OpenAIChatCompletionClient(model="gpt-4o", api_key="api_key")
|
|
chunks: List[str | CreateResult] = []
|
|
async for chunk in client.create_stream(
|
|
messages=[UserMessage(content="Hello", source="user")],
|
|
# include_usage not the default of the OPENAI APIis ,
|
|
# it can be explicitly set
|
|
# or just not declared which is the default
|
|
# extra_create_args={"stream_options": {"include_usage": False}},
|
|
):
|
|
chunks.append(chunk)
|
|
assert chunks[0] == "Hello"
|
|
assert chunks[1] == " Another Hello"
|
|
assert chunks[2] == " Yet Another Hello"
|
|
assert isinstance(chunks[-1], CreateResult)
|
|
assert chunks[-1].content == "Hello Another Hello Yet Another Hello"
|
|
assert chunks[-1].usage == RequestUsage(prompt_tokens=0, completion_tokens=0)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_openai_chat_completion_client_create_stream_no_usage_explicit(monkeypatch: pytest.MonkeyPatch) -> None:
|
|
monkeypatch.setattr(AsyncCompletions, "create", _mock_create)
|
|
client = OpenAIChatCompletionClient(model="gpt-4o", api_key="api_key")
|
|
chunks: List[str | CreateResult] = []
|
|
async for chunk in client.create_stream(
|
|
messages=[UserMessage(content="Hello", source="user")],
|
|
# include_usage is not the default of the OPENAI API ,
|
|
# it can be explicitly set
|
|
# or just not declared which is the default
|
|
extra_create_args={"stream_options": {"include_usage": False}},
|
|
):
|
|
chunks.append(chunk)
|
|
assert chunks[0] == "Hello"
|
|
assert chunks[1] == " Another Hello"
|
|
assert chunks[2] == " Yet Another Hello"
|
|
assert isinstance(chunks[-1], CreateResult)
|
|
assert chunks[-1].content == "Hello Another Hello Yet Another Hello"
|
|
assert chunks[-1].usage == RequestUsage(prompt_tokens=0, completion_tokens=0)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_openai_chat_completion_client_create_cancel(monkeypatch: pytest.MonkeyPatch) -> None:
|
|
monkeypatch.setattr(AsyncCompletions, "create", _mock_create)
|
|
client = OpenAIChatCompletionClient(model="gpt-4o", api_key="api_key")
|
|
cancellation_token = CancellationToken()
|
|
task = asyncio.create_task(
|
|
client.create(messages=[UserMessage(content="Hello", source="user")], cancellation_token=cancellation_token)
|
|
)
|
|
cancellation_token.cancel()
|
|
with pytest.raises(asyncio.CancelledError):
|
|
await task
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_openai_chat_completion_client_create_stream_cancel(monkeypatch: pytest.MonkeyPatch) -> None:
|
|
monkeypatch.setattr(AsyncCompletions, "create", _mock_create)
|
|
client = OpenAIChatCompletionClient(model="gpt-4o", api_key="api_key")
|
|
cancellation_token = CancellationToken()
|
|
stream = client.create_stream(
|
|
messages=[UserMessage(content="Hello", source="user")], cancellation_token=cancellation_token
|
|
)
|
|
assert await anext(stream)
|
|
cancellation_token.cancel()
|
|
with pytest.raises(asyncio.CancelledError):
|
|
async for _ in stream:
|
|
pass
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_openai_chat_completion_client_count_tokens(monkeypatch: pytest.MonkeyPatch) -> None:
|
|
client = OpenAIChatCompletionClient(model="gpt-4o", api_key="api_key")
|
|
messages: List[LLMMessage] = [
|
|
SystemMessage(content="Hello"),
|
|
UserMessage(content="Hello", source="user"),
|
|
AssistantMessage(content="Hello", source="assistant"),
|
|
UserMessage(
|
|
content=[
|
|
"str1",
|
|
Image.from_base64(
|
|
"iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAIAAACQd1PeAAAADElEQVR4nGP4z8AAAAMBAQDJ/pLvAAAAAElFTkSuQmCC"
|
|
),
|
|
],
|
|
source="user",
|
|
),
|
|
FunctionExecutionResultMessage(content=[FunctionExecutionResult(content="Hello", call_id="1")]),
|
|
]
|
|
|
|
def tool1(test: str, test2: str) -> str:
|
|
return test + test2
|
|
|
|
def tool2(test1: int, test2: List[int]) -> str:
|
|
return str(test1) + str(test2)
|
|
|
|
tools = [FunctionTool(tool1, description="example tool 1"), FunctionTool(tool2, description="example tool 2")]
|
|
|
|
mockcalculate_vision_tokens = MagicMock()
|
|
monkeypatch.setattr("autogen_ext.models.openai._openai_client.calculate_vision_tokens", mockcalculate_vision_tokens)
|
|
|
|
num_tokens = client.count_tokens(messages, tools=tools)
|
|
assert num_tokens
|
|
|
|
# Check that calculate_vision_tokens was called
|
|
mockcalculate_vision_tokens.assert_called_once()
|
|
|
|
remaining_tokens = client.remaining_tokens(messages, tools=tools)
|
|
assert remaining_tokens
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"mock_size, expected_num_tokens",
|
|
[
|
|
((1, 1), 255),
|
|
((512, 512), 255),
|
|
((2048, 512), 765),
|
|
((2048, 2048), 765),
|
|
((512, 1024), 425),
|
|
],
|
|
)
|
|
def test_openai_count_image_tokens(mock_size: Tuple[int, int], expected_num_tokens: int) -> None:
|
|
# Step 1: Mock the Image class with only the 'image' attribute
|
|
mock_image_attr = MagicMock()
|
|
mock_image_attr.size = mock_size
|
|
|
|
mock_image = MagicMock()
|
|
mock_image.image = mock_image_attr
|
|
|
|
# Directly call calculate_vision_tokens and check the result
|
|
calculated_tokens = calculate_vision_tokens(mock_image, detail="auto")
|
|
assert calculated_tokens == expected_num_tokens
|
|
|
|
|
|
def test_convert_tools_accepts_both_func_tool_and_schema() -> None:
|
|
def my_function(arg: str, other: Annotated[int, "int arg"], nonrequired: int = 5) -> MyResult:
|
|
return MyResult(result="test")
|
|
|
|
tool = FunctionTool(my_function, description="Function tool.")
|
|
schema = tool.schema
|
|
|
|
converted_tool_schema = convert_tools([tool, schema])
|
|
|
|
assert len(converted_tool_schema) == 2
|
|
assert converted_tool_schema[0] == converted_tool_schema[1]
|
|
|
|
|
|
def test_convert_tools_accepts_both_tool_and_schema() -> None:
|
|
class MyTool(BaseTool[MyArgs, MyResult]):
|
|
def __init__(self) -> None:
|
|
super().__init__(
|
|
args_type=MyArgs,
|
|
return_type=MyResult,
|
|
name="TestTool",
|
|
description="Description of test tool.",
|
|
)
|
|
|
|
async def run(self, args: MyArgs, cancellation_token: CancellationToken) -> MyResult:
|
|
return MyResult(result="value")
|
|
|
|
tool = MyTool()
|
|
schema = tool.schema
|
|
|
|
converted_tool_schema = convert_tools([tool, schema])
|
|
|
|
assert len(converted_tool_schema) == 2
|
|
assert converted_tool_schema[0] == converted_tool_schema[1]
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_structured_output(monkeypatch: pytest.MonkeyPatch) -> None:
|
|
class AgentResponse(BaseModel):
|
|
thoughts: str
|
|
response: Literal["happy", "sad", "neutral"]
|
|
|
|
model = "gpt-4o-2024-11-20"
|
|
chat_completions: List[ParsedChatCompletion[AgentResponse]] = [
|
|
ParsedChatCompletion(
|
|
id="id1",
|
|
choices=[
|
|
ParsedChoice(
|
|
finish_reason="stop",
|
|
index=0,
|
|
message=ParsedChatCompletionMessage(
|
|
content=json.dumps(
|
|
{
|
|
"thoughts": "The user explicitly states that they are happy without any indication of sadness or neutrality.",
|
|
"response": "happy",
|
|
}
|
|
),
|
|
role="assistant",
|
|
),
|
|
)
|
|
],
|
|
created=0,
|
|
model=model,
|
|
object="chat.completion",
|
|
usage=CompletionUsage(prompt_tokens=10, completion_tokens=5, total_tokens=0),
|
|
),
|
|
]
|
|
mock = _MockBetaChatCompletion(chat_completions)
|
|
monkeypatch.setattr(BetaAsyncCompletions, "parse", mock.mock_parse)
|
|
|
|
model_client = OpenAIChatCompletionClient(
|
|
model=model,
|
|
api_key="",
|
|
response_format=AgentResponse, # type: ignore
|
|
)
|
|
|
|
# Test that the openai client was called with the correct response format.
|
|
create_result = await model_client.create(messages=[UserMessage(content="I am happy.", source="user")])
|
|
assert isinstance(create_result.content, str)
|
|
response = AgentResponse.model_validate(json.loads(create_result.content))
|
|
assert (
|
|
response.thoughts
|
|
== "The user explicitly states that they are happy without any indication of sadness or neutrality."
|
|
)
|
|
assert response.response == "happy"
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_tool_calling(monkeypatch: pytest.MonkeyPatch) -> None:
|
|
model = "gpt-4o-2024-05-13"
|
|
chat_completions = [
|
|
# Successful completion, single tool call
|
|
ChatCompletion(
|
|
id="id1",
|
|
choices=[
|
|
Choice(
|
|
finish_reason="tool_calls",
|
|
index=0,
|
|
message=ChatCompletionMessage(
|
|
content=None,
|
|
tool_calls=[
|
|
ChatCompletionMessageToolCall(
|
|
id="1",
|
|
type="function",
|
|
function=Function(
|
|
name="_pass_function",
|
|
arguments=json.dumps({"input": "task"}),
|
|
),
|
|
)
|
|
],
|
|
role="assistant",
|
|
),
|
|
)
|
|
],
|
|
created=0,
|
|
model=model,
|
|
object="chat.completion",
|
|
usage=CompletionUsage(prompt_tokens=10, completion_tokens=5, total_tokens=0),
|
|
),
|
|
# Successful completion, parallel tool calls
|
|
ChatCompletion(
|
|
id="id2",
|
|
choices=[
|
|
Choice(
|
|
finish_reason="tool_calls",
|
|
index=0,
|
|
message=ChatCompletionMessage(
|
|
content=None,
|
|
tool_calls=[
|
|
ChatCompletionMessageToolCall(
|
|
id="1",
|
|
type="function",
|
|
function=Function(
|
|
name="_pass_function",
|
|
arguments=json.dumps({"input": "task"}),
|
|
),
|
|
),
|
|
ChatCompletionMessageToolCall(
|
|
id="2",
|
|
type="function",
|
|
function=Function(
|
|
name="_fail_function",
|
|
arguments=json.dumps({"input": "task"}),
|
|
),
|
|
),
|
|
ChatCompletionMessageToolCall(
|
|
id="3",
|
|
type="function",
|
|
function=Function(
|
|
name="_echo_function",
|
|
arguments=json.dumps({"input": "task"}),
|
|
),
|
|
),
|
|
],
|
|
role="assistant",
|
|
),
|
|
)
|
|
],
|
|
created=0,
|
|
model=model,
|
|
object="chat.completion",
|
|
usage=CompletionUsage(prompt_tokens=10, completion_tokens=5, total_tokens=0),
|
|
),
|
|
# Warning completion when finish reason is not tool_calls.
|
|
ChatCompletion(
|
|
id="id3",
|
|
choices=[
|
|
Choice(
|
|
finish_reason="stop",
|
|
index=0,
|
|
message=ChatCompletionMessage(
|
|
content=None,
|
|
tool_calls=[
|
|
ChatCompletionMessageToolCall(
|
|
id="1",
|
|
type="function",
|
|
function=Function(
|
|
name="_pass_function",
|
|
arguments=json.dumps({"input": "task"}),
|
|
),
|
|
)
|
|
],
|
|
role="assistant",
|
|
),
|
|
)
|
|
],
|
|
created=0,
|
|
model=model,
|
|
object="chat.completion",
|
|
usage=CompletionUsage(prompt_tokens=10, completion_tokens=5, total_tokens=0),
|
|
),
|
|
# Warning completion when content is not None.
|
|
ChatCompletion(
|
|
id="id4",
|
|
choices=[
|
|
Choice(
|
|
finish_reason="tool_calls",
|
|
index=0,
|
|
message=ChatCompletionMessage(
|
|
content="I should make a tool call.",
|
|
tool_calls=[
|
|
ChatCompletionMessageToolCall(
|
|
id="1",
|
|
type="function",
|
|
function=Function(
|
|
name="_pass_function",
|
|
arguments=json.dumps({"input": "task"}),
|
|
),
|
|
)
|
|
],
|
|
role="assistant",
|
|
),
|
|
)
|
|
],
|
|
created=0,
|
|
model=model,
|
|
object="chat.completion",
|
|
usage=CompletionUsage(prompt_tokens=10, completion_tokens=5, total_tokens=0),
|
|
),
|
|
]
|
|
mock = _MockChatCompletion(chat_completions)
|
|
monkeypatch.setattr(AsyncCompletions, "create", mock.mock_create)
|
|
pass_tool = FunctionTool(_pass_function, description="pass tool.")
|
|
fail_tool = FunctionTool(_fail_function, description="fail tool.")
|
|
echo_tool = FunctionTool(_echo_function, description="echo tool.")
|
|
model_client = OpenAIChatCompletionClient(model=model, api_key="")
|
|
|
|
# Single tool call
|
|
create_result = await model_client.create(messages=[UserMessage(content="Hello", source="user")], tools=[pass_tool])
|
|
assert create_result.content == [FunctionCall(id="1", arguments=r'{"input": "task"}', name="_pass_function")]
|
|
# Verify that the tool schema was passed to the model client.
|
|
kwargs = mock.calls[0]
|
|
assert kwargs["tools"] == [{"function": pass_tool.schema, "type": "function"}]
|
|
# Verify finish reason
|
|
assert create_result.finish_reason == "function_calls"
|
|
|
|
# Parallel tool calls
|
|
create_result = await model_client.create(
|
|
messages=[UserMessage(content="Hello", source="user")], tools=[pass_tool, fail_tool, echo_tool]
|
|
)
|
|
assert create_result.content == [
|
|
FunctionCall(id="1", arguments=r'{"input": "task"}', name="_pass_function"),
|
|
FunctionCall(id="2", arguments=r'{"input": "task"}', name="_fail_function"),
|
|
FunctionCall(id="3", arguments=r'{"input": "task"}', name="_echo_function"),
|
|
]
|
|
# Verify that the tool schema was passed to the model client.
|
|
kwargs = mock.calls[1]
|
|
assert kwargs["tools"] == [
|
|
{"function": pass_tool.schema, "type": "function"},
|
|
{"function": fail_tool.schema, "type": "function"},
|
|
{"function": echo_tool.schema, "type": "function"},
|
|
]
|
|
# Verify finish reason
|
|
assert create_result.finish_reason == "function_calls"
|
|
|
|
# Warning completion when finish reason is not tool_calls.
|
|
with pytest.warns(UserWarning, match="Finish reason mismatch"):
|
|
create_result = await model_client.create(
|
|
messages=[UserMessage(content="Hello", source="user")], tools=[pass_tool]
|
|
)
|
|
assert create_result.content == [FunctionCall(id="1", arguments=r'{"input": "task"}', name="_pass_function")]
|
|
assert create_result.finish_reason == "function_calls"
|
|
|
|
# Warning completion when content is not None.
|
|
with pytest.warns(UserWarning, match="Both tool_calls and content are present in the message"):
|
|
create_result = await model_client.create(
|
|
messages=[UserMessage(content="Hello", source="user")], tools=[pass_tool]
|
|
)
|
|
assert create_result.content == [FunctionCall(id="1", arguments=r'{"input": "task"}', name="_pass_function")]
|
|
assert create_result.finish_reason == "function_calls"
|
|
|
|
|
|
async def _test_model_client(model_client: OpenAIChatCompletionClient) -> None:
|
|
# Test basic completion
|
|
create_result = await model_client.create(
|
|
messages=[
|
|
SystemMessage(content="You are a helpful assistant."),
|
|
UserMessage(content="Explain to me how AI works.", source="user"),
|
|
]
|
|
)
|
|
assert isinstance(create_result.content, str)
|
|
assert len(create_result.content) > 0
|
|
|
|
# Test tool calling
|
|
pass_tool = FunctionTool(_pass_function, name="pass_tool", description="pass session.")
|
|
fail_tool = FunctionTool(_fail_function, name="fail_tool", description="fail session.")
|
|
messages: List[LLMMessage] = [UserMessage(content="Call the pass tool with input 'task'", source="user")]
|
|
create_result = await model_client.create(messages=messages, tools=[pass_tool, fail_tool])
|
|
assert isinstance(create_result.content, list)
|
|
assert len(create_result.content) == 1
|
|
assert isinstance(create_result.content[0], FunctionCall)
|
|
assert create_result.content[0].name == "pass_tool"
|
|
assert json.loads(create_result.content[0].arguments) == {"input": "task"}
|
|
assert create_result.finish_reason == "function_calls"
|
|
assert create_result.usage is not None
|
|
|
|
# Test reflection on tool call response.
|
|
messages.append(AssistantMessage(content=create_result.content, source="assistant"))
|
|
messages.append(
|
|
FunctionExecutionResultMessage(
|
|
content=[FunctionExecutionResult(content="passed", call_id=create_result.content[0].id)]
|
|
)
|
|
)
|
|
create_result = await model_client.create(messages=messages)
|
|
assert isinstance(create_result.content, str)
|
|
assert len(create_result.content) > 0
|
|
|
|
# Test parallel tool calling
|
|
messages = [
|
|
UserMessage(
|
|
content="Call both the pass tool with input 'task' and the fail tool also with input 'task'", source="user"
|
|
)
|
|
]
|
|
create_result = await model_client.create(messages=messages, tools=[pass_tool, fail_tool])
|
|
assert isinstance(create_result.content, list)
|
|
assert len(create_result.content) == 2
|
|
assert isinstance(create_result.content[0], FunctionCall)
|
|
assert create_result.content[0].name == "pass_tool"
|
|
assert json.loads(create_result.content[0].arguments) == {"input": "task"}
|
|
assert isinstance(create_result.content[1], FunctionCall)
|
|
assert create_result.content[1].name == "fail_tool"
|
|
assert json.loads(create_result.content[1].arguments) == {"input": "task"}
|
|
assert create_result.finish_reason == "function_calls"
|
|
assert create_result.usage is not None
|
|
|
|
# Test reflection on parallel tool call response.
|
|
messages.append(AssistantMessage(content=create_result.content, source="assistant"))
|
|
messages.append(
|
|
FunctionExecutionResultMessage(
|
|
content=[
|
|
FunctionExecutionResult(content="passed", call_id=create_result.content[0].id),
|
|
FunctionExecutionResult(content="failed", call_id=create_result.content[1].id),
|
|
]
|
|
)
|
|
)
|
|
create_result = await model_client.create(messages=messages)
|
|
assert isinstance(create_result.content, str)
|
|
assert len(create_result.content) > 0
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_openai() -> None:
|
|
api_key = os.getenv("OPENAI_API_KEY")
|
|
if not api_key:
|
|
pytest.skip("OPENAI_API_KEY not found in environment variables")
|
|
|
|
model_client = OpenAIChatCompletionClient(
|
|
model="gpt-4o-mini",
|
|
api_key=api_key,
|
|
)
|
|
await _test_model_client(model_client)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_gemini() -> None:
|
|
api_key = os.getenv("GEMINI_API_KEY")
|
|
if not api_key:
|
|
pytest.skip("GEMINI_API_KEY not found in environment variables")
|
|
|
|
model_client = OpenAIChatCompletionClient(
|
|
model="gemini-1.5-flash",
|
|
api_key=api_key,
|
|
base_url="https://generativelanguage.googleapis.com/v1beta/openai/",
|
|
model_info={
|
|
"function_calling": True,
|
|
"json_output": True,
|
|
"vision": True,
|
|
"family": ModelFamily.UNKNOWN,
|
|
},
|
|
)
|
|
await _test_model_client(model_client)
|
|
|
|
|
|
# TODO: add integration tests for Azure OpenAI using AAD token.
|