mirror of
https://github.com/microsoft/autogen.git
synced 2025-07-10 10:31:58 +00:00
253 lines
9.9 KiB
Python
253 lines
9.9 KiB
Python
"""This is an example of a terminal-based ChatGPT clone
|
|
using an OpenAIAssistantAgent and event-based orchestration."""
|
|
|
|
import argparse
|
|
import asyncio
|
|
import logging
|
|
import os
|
|
import re
|
|
import sys
|
|
from typing import List
|
|
|
|
import aiofiles
|
|
import openai
|
|
from agnext.application import SingleThreadedAgentRuntime
|
|
from agnext.components import DefaultTopicId, RoutedAgent, message_handler
|
|
from agnext.core import AgentId, AgentRuntime, MessageContext
|
|
from openai import AsyncAssistantEventHandler
|
|
from openai.types.beta.thread import ToolResources
|
|
from openai.types.beta.threads import Message, Text, TextDelta
|
|
from openai.types.beta.threads.runs import RunStep, RunStepDelta
|
|
from typing_extensions import override
|
|
|
|
sys.path.append(os.path.join(os.path.dirname(__file__), ".."))
|
|
|
|
from agnext.core import AgentInstantiationContext
|
|
from common.agents import OpenAIAssistantAgent
|
|
from common.memory import BufferedChatMemory
|
|
from common.patterns._group_chat_manager import GroupChatManager
|
|
from common.types import PublishNow, TextMessage
|
|
|
|
sep = "-" * 50
|
|
|
|
|
|
class UserProxyAgent(RoutedAgent):
|
|
def __init__( # type: ignore
|
|
self,
|
|
client: openai.AsyncClient, # type: ignore
|
|
assistant_id: str,
|
|
thread_id: str,
|
|
vector_store_id: str,
|
|
) -> None: # type: ignore
|
|
super().__init__(
|
|
description="A human user",
|
|
) # type: ignore
|
|
self._client = client
|
|
self._assistant_id = assistant_id
|
|
self._thread_id = thread_id
|
|
self._vector_store_id = vector_store_id
|
|
|
|
@message_handler() # type: ignore
|
|
async def on_text_message(self, message: TextMessage, ctx: MessageContext) -> None:
|
|
# TODO: render image if message has image.
|
|
# print(f"{message.source}: {message.content}")
|
|
pass
|
|
|
|
async def _get_user_input(self, prompt: str) -> str:
|
|
loop = asyncio.get_event_loop()
|
|
return await loop.run_in_executor(None, input, prompt)
|
|
|
|
@message_handler() # type: ignore
|
|
async def on_publish_now(self, message: PublishNow, ctx: MessageContext) -> None:
|
|
while True:
|
|
user_input = await self._get_user_input(f"\n{sep}\nYou: ")
|
|
# Parse upload file command '[upload code_interpreter | file_search filename]'.
|
|
match = re.search(r"\[upload\s+(code_interpreter|file_search)\s+(.+)\]", user_input)
|
|
if match:
|
|
# Purpose of the file.
|
|
purpose = match.group(1)
|
|
# Extract file path.
|
|
file_path = match.group(2)
|
|
if not os.path.exists(file_path):
|
|
print(f"File not found: {file_path}")
|
|
continue
|
|
# Filename.
|
|
file_name = os.path.basename(file_path)
|
|
# Read file content.
|
|
async with aiofiles.open(file_path, "rb") as f:
|
|
file_content = await f.read()
|
|
if purpose == "code_interpreter":
|
|
# Upload file.
|
|
file = await self._client.files.create(file=(file_name, file_content), purpose="assistants")
|
|
# Get existing file ids from tool resources.
|
|
thread = await self._client.beta.threads.retrieve(thread_id=self._thread_id)
|
|
tool_resources: ToolResources = thread.tool_resources if thread.tool_resources else ToolResources()
|
|
assert tool_resources.code_interpreter is not None
|
|
if tool_resources.code_interpreter.file_ids:
|
|
file_ids = tool_resources.code_interpreter.file_ids
|
|
else:
|
|
file_ids = [file.id]
|
|
# Update thread with new file.
|
|
await self._client.beta.threads.update(
|
|
thread_id=self._thread_id,
|
|
tool_resources={"code_interpreter": {"file_ids": file_ids}},
|
|
)
|
|
elif purpose == "file_search":
|
|
# Upload file to vector store.
|
|
file_batch = await self._client.beta.vector_stores.file_batches.upload_and_poll(
|
|
vector_store_id=self._vector_store_id,
|
|
files=[(file_name, file_content)],
|
|
)
|
|
assert file_batch.status == "completed"
|
|
print(f"Uploaded file: {file_name}")
|
|
continue
|
|
elif user_input.startswith("[upload"):
|
|
print("Invalid upload command. Please use '[upload code_interpreter | file_search filename]'.")
|
|
continue
|
|
elif user_input.strip().lower() == "exit":
|
|
# Exit handler.
|
|
return
|
|
else:
|
|
# Publish user input and exit handler.
|
|
await self.publish_message(
|
|
TextMessage(content=user_input, source=self.metadata["type"]), topic_id=DefaultTopicId()
|
|
)
|
|
return
|
|
|
|
|
|
class EventHandler(AsyncAssistantEventHandler):
|
|
@override
|
|
async def on_text_delta(self, delta: TextDelta, snapshot: Text) -> None:
|
|
print(delta.value, end="", flush=True)
|
|
|
|
@override
|
|
async def on_run_step_created(self, run_step: RunStep) -> None:
|
|
details = run_step.step_details
|
|
if details.type == "tool_calls":
|
|
for tool in details.tool_calls:
|
|
if tool.type == "code_interpreter":
|
|
print("\nGenerating code to interpret:\n\n```python")
|
|
|
|
@override
|
|
async def on_run_step_done(self, run_step: RunStep) -> None:
|
|
details = run_step.step_details
|
|
if details.type == "tool_calls":
|
|
for tool in details.tool_calls:
|
|
if tool.type == "code_interpreter":
|
|
print("\n```\nExecuting code...")
|
|
|
|
@override
|
|
async def on_run_step_delta(self, delta: RunStepDelta, snapshot: RunStep) -> None:
|
|
details = delta.step_details
|
|
if details is not None and details.type == "tool_calls":
|
|
for tool in details.tool_calls or []:
|
|
if tool.type == "code_interpreter" and tool.code_interpreter and tool.code_interpreter.input:
|
|
print(tool.code_interpreter.input, end="", flush=True)
|
|
|
|
@override
|
|
async def on_message_created(self, message: Message) -> None:
|
|
print(f"{sep}\nAssistant:\n")
|
|
|
|
@override
|
|
async def on_message_done(self, message: Message) -> None:
|
|
# print a citation to the file searched
|
|
if not message.content:
|
|
return
|
|
content = message.content[0]
|
|
if not content.type == "text":
|
|
return
|
|
text_content = content.text
|
|
annotations = text_content.annotations
|
|
citations: List[str] = []
|
|
for index, annotation in enumerate(annotations):
|
|
text_content.value = text_content.value.replace(annotation.text, f"[{index}]")
|
|
if file_citation := getattr(annotation, "file_citation", None):
|
|
client = openai.AsyncClient()
|
|
cited_file = await client.files.retrieve(file_citation.file_id)
|
|
citations.append(f"[{index}] {cited_file.filename}")
|
|
if citations:
|
|
print("\n".join(citations))
|
|
|
|
|
|
async def assistant_chat(runtime: AgentRuntime) -> str:
|
|
oai_assistant = openai.beta.assistants.create(
|
|
model="gpt-4-turbo",
|
|
description="An AI assistant that helps with everyday tasks.",
|
|
instructions="Help the user with their task.",
|
|
tools=[{"type": "code_interpreter"}, {"type": "file_search"}],
|
|
)
|
|
vector_store = openai.beta.vector_stores.create()
|
|
thread = openai.beta.threads.create(
|
|
tool_resources={"file_search": {"vector_store_ids": [vector_store.id]}},
|
|
)
|
|
await runtime.register(
|
|
"Assistant",
|
|
lambda: OpenAIAssistantAgent(
|
|
description="An AI assistant that helps with everyday tasks.",
|
|
client=openai.AsyncClient(),
|
|
assistant_id=oai_assistant.id,
|
|
thread_id=thread.id,
|
|
assistant_event_handler_factory=lambda: EventHandler(),
|
|
),
|
|
)
|
|
|
|
await runtime.register(
|
|
"User",
|
|
lambda: UserProxyAgent(
|
|
client=openai.AsyncClient(),
|
|
assistant_id=oai_assistant.id,
|
|
thread_id=thread.id,
|
|
vector_store_id=vector_store.id,
|
|
),
|
|
)
|
|
# Create a group chat manager to facilitate a turn-based conversation.
|
|
await runtime.register(
|
|
"GroupChatManager",
|
|
lambda: GroupChatManager(
|
|
description="A group chat manager.",
|
|
memory=BufferedChatMemory(buffer_size=10),
|
|
participants=[
|
|
AgentId("Assistant", AgentInstantiationContext.current_agent_id().key),
|
|
AgentId("User", AgentInstantiationContext.current_agent_id().key),
|
|
],
|
|
),
|
|
)
|
|
return "User"
|
|
|
|
|
|
async def main() -> None:
|
|
usage = """Chat with an AI assistant backed by OpenAI Assistant API.
|
|
You can upload files to the assistant using the command:
|
|
|
|
[upload code_interpreter | file_search filename]
|
|
|
|
where 'code_interpreter' or 'file_search' is the purpose of the file and
|
|
'filename' is the path to the file. For example:
|
|
|
|
[upload code_interpreter data.csv]
|
|
|
|
This will upload data.csv to the assistant for use with the code interpreter tool.
|
|
|
|
Type "exit" to exit the chat.
|
|
"""
|
|
runtime = SingleThreadedAgentRuntime()
|
|
user = await assistant_chat(runtime)
|
|
runtime.start()
|
|
print(usage)
|
|
# Request the user to start the conversation.
|
|
await runtime.send_message(PublishNow(), AgentId(user, "default"))
|
|
|
|
# TODO: have a way to exit the loop.
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(description="Chat with an AI assistant.")
|
|
parser.add_argument("--verbose", action="store_true", help="Enable verbose logging.")
|
|
args = parser.parse_args()
|
|
if args.verbose:
|
|
logging.basicConfig(level=logging.WARNING)
|
|
logging.getLogger("agnext").setLevel(logging.DEBUG)
|
|
handler = logging.FileHandler("assistant.log")
|
|
logging.getLogger("agnext").addHandler(handler)
|
|
asyncio.run(main())
|