autogen/test/default_lgbm.py
Chi Wang df01031cfe
Zero-shot AutoML (#468)
* Prepare for release

Co-authored-by: Moe Kayali <t-moekayali@microsoft.com>

* bug fix

* improve doc and code quality

Co-authored-by: Qingyun Wu
2022-03-01 15:39:09 -08:00

17 lines
521 B
Python

from flaml.data import load_openml_dataset
from flaml.default import LGBMRegressor
from flaml.ml import sklearn_metric_loss_score
X_train, X_test, y_train, y_test = load_openml_dataset(dataset_id=537, data_dir="./")
lgbm = LGBMRegressor()
hyperparams, estimator_name, X_transformed, y_transformed = lgbm.suggest_hyperparams(
X_train, y_train
)
print(hyperparams)
lgbm.fit(X_train, y_train)
y_pred = lgbm.predict(X_test)
print("flamlized lgbm r2 =", 1 - sklearn_metric_loss_score("r2", y_pred, y_test))
print(lgbm)