mirror of
https://github.com/microsoft/autogen.git
synced 2025-07-31 21:02:33 +00:00

* xgboost gpu support * test xgboost gpu * test sparse data * add xgboost test * remove ray.init to avoid pytest error
124 lines
3.2 KiB
Python
124 lines
3.2 KiB
Python
import sys
|
|
import pytest
|
|
import pickle
|
|
import shutil
|
|
|
|
|
|
def test_xgboost():
|
|
from flaml import AutoML
|
|
from sklearn.datasets import make_moons
|
|
import scipy.sparse
|
|
import numpy as np
|
|
from xgboost.core import XGBoostError
|
|
|
|
try:
|
|
X_train = scipy.sparse.eye(900000)
|
|
y_train = np.random.randint(2, size=900000)
|
|
automl = AutoML()
|
|
automl.fit(
|
|
X_train,
|
|
y_train,
|
|
estimator_list=["xgb_limitdepth", "xgboost"],
|
|
time_budget=5,
|
|
gpu_per_trial=1,
|
|
)
|
|
|
|
train, label = make_moons(
|
|
n_samples=300000, shuffle=True, noise=0.3, random_state=None
|
|
)
|
|
automl = AutoML()
|
|
automl.fit(
|
|
train,
|
|
label,
|
|
estimator_list=["xgb_limitdepth", "xgboost"],
|
|
time_budget=5,
|
|
gpu_per_trial=1,
|
|
)
|
|
automl.fit(
|
|
train,
|
|
label,
|
|
estimator_list=["xgb_limitdepth", "xgboost"],
|
|
time_budget=5,
|
|
)
|
|
except XGBoostError:
|
|
# No visible GPU is found for XGBoost.
|
|
return
|
|
|
|
|
|
@pytest.mark.skipif(sys.platform == "darwin", reason="do not run on mac os")
|
|
def _test_hf_data():
|
|
from flaml import AutoML
|
|
import requests
|
|
from datasets import load_dataset
|
|
|
|
try:
|
|
train_dataset = load_dataset("glue", "mrpc", split="train[:1%]").to_pandas()
|
|
dev_dataset = load_dataset("glue", "mrpc", split="validation[:1%]").to_pandas()
|
|
test_dataset = load_dataset("glue", "mrpc", split="test[:1%]").to_pandas()
|
|
except requests.exceptions.ConnectionError:
|
|
return
|
|
|
|
custom_sent_keys = ["sentence1", "sentence2"]
|
|
label_key = "label"
|
|
|
|
X_train = train_dataset[custom_sent_keys]
|
|
y_train = train_dataset[label_key]
|
|
|
|
X_val = dev_dataset[custom_sent_keys]
|
|
y_val = dev_dataset[label_key]
|
|
|
|
X_test = test_dataset[custom_sent_keys]
|
|
|
|
automl = AutoML()
|
|
|
|
automl_settings = {
|
|
"gpu_per_trial": 1,
|
|
"max_iter": 2,
|
|
"time_budget": 5000,
|
|
"task": "seq-classification",
|
|
"metric": "accuracy",
|
|
"log_file_name": "seqclass.log",
|
|
"use_ray": True,
|
|
}
|
|
|
|
automl_settings["custom_hpo_args"] = {
|
|
"model_path": "facebook/muppet-roberta-base",
|
|
"output_dir": "test/data/output/",
|
|
"ckpt_per_epoch": 5,
|
|
"fp16": True,
|
|
}
|
|
|
|
automl.fit(
|
|
X_train=X_train, y_train=y_train, X_val=X_val, y_val=y_val, **automl_settings
|
|
)
|
|
|
|
automl = AutoML()
|
|
automl.retrain_from_log(
|
|
X_train=X_train,
|
|
y_train=y_train,
|
|
train_full=True,
|
|
record_id=0,
|
|
**automl_settings
|
|
)
|
|
with open("automl.pkl", "wb") as f:
|
|
pickle.dump(automl, f, pickle.HIGHEST_PROTOCOL)
|
|
with open("automl.pkl", "rb") as f:
|
|
automl = pickle.load(f)
|
|
shutil.rmtree("test/data/output/")
|
|
automl.predict(X_test)
|
|
automl.predict(["test test", "test test"])
|
|
automl.predict(
|
|
[
|
|
["test test", "test test"],
|
|
["test test", "test test"],
|
|
["test test", "test test"],
|
|
]
|
|
)
|
|
|
|
automl.predict_proba(X_test)
|
|
print(automl.classes_)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
_test_hf_data()
|