mirror of
https://github.com/microsoft/autogen.git
synced 2025-07-24 09:20:52 +00:00

* max_iter < 2 -> no search * use_ray in test * eval_method in ts example * check sign of constraints * test metric constraint sign
39 KiB
39 KiB
AutoML - Time Series Forecast
Prerequisites
Install the [ts_forecast] option.
pip install "flaml[ts_forecast]"
Univariate time series
import numpy as np
from flaml import AutoML
X_train = np.arange('2014-01', '2022-01', dtype='datetime64[M]')
y_train = np.random.random(size=84)
automl = AutoML()
automl.fit(X_train=X_train[:84], # a single column of timestamp
y_train=y_train, # value for each timestamp
period=12, # time horizon to forecast, e.g., 12 months
task='ts_forecast', time_budget=15, # time budget in seconds
log_file_name="ts_forecast.log",
eval_method="holdout",
)
print(automl.predict(X_train[84:]))
Sample output
[flaml.automl: 01-21 08:01:20] {2018} INFO - task = ts_forecast
[flaml.automl: 01-21 08:01:20] {2020} INFO - Data split method: time
[flaml.automl: 01-21 08:01:20] {2024} INFO - Evaluation method: holdout
[flaml.automl: 01-21 08:01:20] {2124} INFO - Minimizing error metric: mape
[flaml.automl: 01-21 08:01:21] {2181} INFO - List of ML learners in AutoML Run: ['lgbm', 'rf', 'xgboost', 'extra_tree', 'xgb_limitdepth', 'prophet', 'arima', 'sarimax']
[flaml.automl: 01-21 08:01:21] {2434} INFO - iteration 0, current learner lgbm
[flaml.automl: 01-21 08:01:21] {2547} INFO - Estimated sufficient time budget=1429s. Estimated necessary time budget=1s.
[flaml.automl: 01-21 08:01:21] {2594} INFO - at 0.9s, estimator lgbm's best error=0.9811, best estimator lgbm's best error=0.9811
[flaml.automl: 01-21 08:01:21] {2434} INFO - iteration 1, current learner lgbm
[flaml.automl: 01-21 08:01:21] {2594} INFO - at 0.9s, estimator lgbm's best error=0.9811, best estimator lgbm's best error=0.9811
[flaml.automl: 01-21 08:01:21] {2434} INFO - iteration 2, current learner lgbm
[flaml.automl: 01-21 08:01:21] {2594} INFO - at 0.9s, estimator lgbm's best error=0.9811, best estimator lgbm's best error=0.9811
[flaml.automl: 01-21 08:01:21] {2434} INFO - iteration 3, current learner lgbm
[flaml.automl: 01-21 08:01:21] {2594} INFO - at 1.0s, estimator lgbm's best error=0.9811, best estimator lgbm's best error=0.9811
[flaml.automl: 01-21 08:01:21] {2434} INFO - iteration 4, current learner lgbm
[flaml.automl: 01-21 08:01:21] {2594} INFO - at 1.0s, estimator lgbm's best error=0.9811, best estimator lgbm's best error=0.9811
[flaml.automl: 01-21 08:01:21] {2434} INFO - iteration 5, current learner lgbm
[flaml.automl: 01-21 08:01:21] {2594} INFO - at 1.0s, estimator lgbm's best error=0.9811, best estimator lgbm's best error=0.9811
[flaml.automl: 01-21 08:01:21] {2434} INFO - iteration 6, current learner lgbm
[flaml.automl: 01-21 08:01:21] {2594} INFO - at 1.0s, estimator lgbm's best error=0.9652, best estimator lgbm's best error=0.9652
[flaml.automl: 01-21 08:01:21] {2434} INFO - iteration 7, current learner lgbm
[flaml.automl: 01-21 08:01:21] {2594} INFO - at 1.0s, estimator lgbm's best error=0.9466, best estimator lgbm's best error=0.9466
[flaml.automl: 01-21 08:01:21] {2434} INFO - iteration 8, current learner lgbm
[flaml.automl: 01-21 08:01:21] {2594} INFO - at 1.0s, estimator lgbm's best error=0.9466, best estimator lgbm's best error=0.9466
[flaml.automl: 01-21 08:01:21] {2434} INFO - iteration 9, current learner lgbm
[flaml.automl: 01-21 08:01:22] {2594} INFO - at 1.1s, estimator lgbm's best error=0.9466, best estimator lgbm's best error=0.9466
[flaml.automl: 01-21 08:01:22] {2434} INFO - iteration 10, current learner lgbm
[flaml.automl: 01-21 08:01:22] {2594} INFO - at 1.1s, estimator lgbm's best error=0.9466, best estimator lgbm's best error=0.9466
[flaml.automl: 01-21 08:01:22] {2434} INFO - iteration 11, current learner lgbm
[flaml.automl: 01-21 08:01:22] {2594} INFO - at 1.1s, estimator lgbm's best error=0.9466, best estimator lgbm's best error=0.9466
[flaml.automl: 01-21 08:01:22] {2434} INFO - iteration 12, current learner lgbm
[flaml.automl: 01-21 08:01:22] {2594} INFO - at 1.1s, estimator lgbm's best error=0.9466, best estimator lgbm's best error=0.9466
[flaml.automl: 01-21 08:01:22] {2434} INFO - iteration 13, current learner lgbm
[flaml.automl: 01-21 08:01:22] {2594} INFO - at 1.1s, estimator lgbm's best error=0.9466, best estimator lgbm's best error=0.9466
[flaml.automl: 01-21 08:01:22] {2434} INFO - iteration 14, current learner lgbm
[flaml.automl: 01-21 08:01:22] {2594} INFO - at 1.1s, estimator lgbm's best error=0.9466, best estimator lgbm's best error=0.9466
[flaml.automl: 01-21 08:01:22] {2434} INFO - iteration 15, current learner lgbm
[flaml.automl: 01-21 08:01:22] {2594} INFO - at 1.2s, estimator lgbm's best error=0.9466, best estimator lgbm's best error=0.9466
[flaml.automl: 01-21 08:01:22] {2434} INFO - iteration 16, current learner lgbm
[flaml.automl: 01-21 08:01:22] {2594} INFO - at 1.2s, estimator lgbm's best error=0.9466, best estimator lgbm's best error=0.9466
[flaml.automl: 01-21 08:01:22] {2434} INFO - iteration 17, current learner lgbm
[flaml.automl: 01-21 08:01:22] {2594} INFO - at 1.2s, estimator lgbm's best error=0.9466, best estimator lgbm's best error=0.9466
[flaml.automl: 01-21 08:01:22] {2434} INFO - iteration 18, current learner rf
[flaml.automl: 01-21 08:01:22] {2594} INFO - at 1.2s, estimator rf's best error=1.0994, best estimator lgbm's best error=0.9466
[flaml.automl: 01-21 08:01:22] {2434} INFO - iteration 19, current learner rf
[flaml.automl: 01-21 08:01:22] {2594} INFO - at 1.2s, estimator rf's best error=1.0848, best estimator lgbm's best error=0.9466
[flaml.automl: 01-21 08:01:22] {2434} INFO - iteration 20, current learner xgboost
[flaml.automl: 01-21 08:01:22] {2594} INFO - at 1.3s, estimator xgboost's best error=1.0271, best estimator lgbm's best error=0.9466
[flaml.automl: 01-21 08:01:22] {2434} INFO - iteration 21, current learner rf
[flaml.automl: 01-21 08:01:22] {2594} INFO - at 1.3s, estimator rf's best error=1.0848, best estimator lgbm's best error=0.9466
[flaml.automl: 01-21 08:01:22] {2434} INFO - iteration 22, current learner xgboost
[flaml.automl: 01-21 08:01:22] {2594} INFO - at 1.3s, estimator xgboost's best error=1.0015, best estimator lgbm's best error=0.9466
[flaml.automl: 01-21 08:01:22] {2434} INFO - iteration 23, current learner xgboost
[flaml.automl: 01-21 08:01:22] {2594} INFO - at 1.3s, estimator xgboost's best error=1.0015, best estimator lgbm's best error=0.9466
[flaml.automl: 01-21 08:01:22] {2434} INFO - iteration 24, current learner xgboost
[flaml.automl: 01-21 08:01:22] {2594} INFO - at 1.3s, estimator xgboost's best error=1.0015, best estimator lgbm's best error=0.9466
[flaml.automl: 01-21 08:01:22] {2434} INFO - iteration 25, current learner extra_tree
[flaml.automl: 01-21 08:01:22] {2594} INFO - at 1.3s, estimator extra_tree's best error=1.0130, best estimator lgbm's best error=0.9466
[flaml.automl: 01-21 08:01:22] {2434} INFO - iteration 26, current learner extra_tree
[flaml.automl: 01-21 08:01:22] {2594} INFO - at 1.4s, estimator extra_tree's best error=1.0130, best estimator lgbm's best error=0.9466
[flaml.automl: 01-21 08:01:22] {2434} INFO - iteration 27, current learner extra_tree
[flaml.automl: 01-21 08:01:22] {2594} INFO - at 1.4s, estimator extra_tree's best error=1.0130, best estimator lgbm's best error=0.9466
[flaml.automl: 01-21 08:01:22] {2434} INFO - iteration 28, current learner extra_tree
[flaml.automl: 01-21 08:01:22] {2594} INFO - at 1.4s, estimator extra_tree's best error=1.0130, best estimator lgbm's best error=0.9466
[flaml.automl: 01-21 08:01:22] {2434} INFO - iteration 29, current learner extra_tree
[flaml.automl: 01-21 08:01:22] {2594} INFO - at 1.4s, estimator extra_tree's best error=0.9499, best estimator lgbm's best error=0.9466
[flaml.automl: 01-21 08:01:22] {2434} INFO - iteration 30, current learner lgbm
[flaml.automl: 01-21 08:01:22] {2594} INFO - at 1.5s, estimator lgbm's best error=0.9466, best estimator lgbm's best error=0.9466
[flaml.automl: 01-21 08:01:22] {2434} INFO - iteration 31, current learner lgbm
[flaml.automl: 01-21 08:01:22] {2594} INFO - at 1.5s, estimator lgbm's best error=0.9466, best estimator lgbm's best error=0.9466
[flaml.automl: 01-21 08:01:22] {2434} INFO - iteration 32, current learner lgbm
[flaml.automl: 01-21 08:01:22] {2594} INFO - at 1.5s, estimator lgbm's best error=0.9466, best estimator lgbm's best error=0.9466
[flaml.automl: 01-21 08:01:22] {2434} INFO - iteration 33, current learner extra_tree
[flaml.automl: 01-21 08:01:22] {2594} INFO - at 1.5s, estimator extra_tree's best error=0.9499, best estimator lgbm's best error=0.9466
[flaml.automl: 01-21 08:01:22] {2434} INFO - iteration 34, current learner lgbm
[flaml.automl: 01-21 08:01:22] {2594} INFO - at 1.5s, estimator lgbm's best error=0.9466, best estimator lgbm's best error=0.9466
[flaml.automl: 01-21 08:01:22] {2434} INFO - iteration 35, current learner xgboost
[flaml.automl: 01-21 08:01:22] {2594} INFO - at 1.5s, estimator xgboost's best error=1.0015, best estimator lgbm's best error=0.9466
[flaml.automl: 01-21 08:01:22] {2434} INFO - iteration 36, current learner extra_tree
[flaml.automl: 01-21 08:01:22] {2594} INFO - at 1.6s, estimator extra_tree's best error=0.9499, best estimator lgbm's best error=0.9466
[flaml.automl: 01-21 08:01:22] {2434} INFO - iteration 37, current learner extra_tree
[flaml.automl: 01-21 08:01:22] {2594} INFO - at 1.6s, estimator extra_tree's best error=0.9499, best estimator lgbm's best error=0.9466
[flaml.automl: 01-21 08:01:22] {2434} INFO - iteration 38, current learner extra_tree
[flaml.automl: 01-21 08:01:22] {2594} INFO - at 1.6s, estimator extra_tree's best error=0.9499, best estimator lgbm's best error=0.9466
[flaml.automl: 01-21 08:01:22] {2434} INFO - iteration 39, current learner xgboost
[flaml.automl: 01-21 08:01:22] {2594} INFO - at 1.6s, estimator xgboost's best error=1.0015, best estimator lgbm's best error=0.9466
[flaml.automl: 01-21 08:01:22] {2434} INFO - iteration 40, current learner extra_tree
[flaml.automl: 01-21 08:01:22] {2594} INFO - at 1.6s, estimator extra_tree's best error=0.9499, best estimator lgbm's best error=0.9466
[flaml.automl: 01-21 08:01:22] {2434} INFO - iteration 41, current learner extra_tree
[flaml.automl: 01-21 08:01:22] {2594} INFO - at 1.7s, estimator extra_tree's best error=0.9499, best estimator lgbm's best error=0.9466
[flaml.automl: 01-21 08:01:22] {2434} INFO - iteration 42, current learner lgbm
[flaml.automl: 01-21 08:01:22] {2594} INFO - at 1.7s, estimator lgbm's best error=0.9466, best estimator lgbm's best error=0.9466
[flaml.automl: 01-21 08:01:22] {2434} INFO - iteration 43, current learner extra_tree
[flaml.automl: 01-21 08:01:22] {2594} INFO - at 1.7s, estimator extra_tree's best error=0.9499, best estimator lgbm's best error=0.9466
[flaml.automl: 01-21 08:01:22] {2434} INFO - iteration 44, current learner xgb_limitdepth
[flaml.automl: 01-21 08:01:22] {2594} INFO - at 1.7s, estimator xgb_limitdepth's best error=1.5815, best estimator lgbm's best error=0.9466
[flaml.automl: 01-21 08:01:22] {2434} INFO - iteration 45, current learner xgb_limitdepth
[flaml.automl: 01-21 08:01:22] {2594} INFO - at 1.8s, estimator xgb_limitdepth's best error=0.9683, best estimator lgbm's best error=0.9466
[flaml.automl: 01-21 08:01:22] {2434} INFO - iteration 46, current learner xgb_limitdepth
[flaml.automl: 01-21 08:01:22] {2594} INFO - at 1.8s, estimator xgb_limitdepth's best error=0.9683, best estimator lgbm's best error=0.9466
[flaml.automl: 01-21 08:01:22] {2434} INFO - iteration 47, current learner xgb_limitdepth
[flaml.automl: 01-21 08:01:22] {2594} INFO - at 1.8s, estimator xgb_limitdepth's best error=0.9683, best estimator lgbm's best error=0.9466
[flaml.automl: 01-21 08:01:22] {2434} INFO - iteration 48, current learner xgb_limitdepth
[flaml.automl: 01-21 08:01:22] {2594} INFO - at 1.9s, estimator xgb_limitdepth's best error=0.9683, best estimator lgbm's best error=0.9466
[flaml.automl: 01-21 08:01:22] {2434} INFO - iteration 49, current learner lgbm
[flaml.automl: 01-21 08:01:22] {2594} INFO - at 1.9s, estimator lgbm's best error=0.9466, best estimator lgbm's best error=0.9466
[flaml.automl: 01-21 08:01:22] {2434} INFO - iteration 50, current learner extra_tree
[flaml.automl: 01-21 08:01:22] {2594} INFO - at 1.9s, estimator extra_tree's best error=0.9499, best estimator lgbm's best error=0.9466
[flaml.automl: 01-21 08:01:22] {2434} INFO - iteration 51, current learner xgb_limitdepth
[flaml.automl: 01-21 08:01:22] {2594} INFO - at 1.9s, estimator xgb_limitdepth's best error=0.9683, best estimator lgbm's best error=0.9466
[flaml.automl: 01-21 08:01:22] {2434} INFO - iteration 52, current learner xgboost
[flaml.automl: 01-21 08:01:22] {2594} INFO - at 2.0s, estimator xgboost's best error=1.0015, best estimator lgbm's best error=0.9466
[flaml.automl: 01-21 08:01:22] {2434} INFO - iteration 53, current learner xgboost
[flaml.automl: 01-21 08:01:22] {2594} INFO - at 2.0s, estimator xgboost's best error=1.0015, best estimator lgbm's best error=0.9466
[flaml.automl: 01-21 08:01:22] {2434} INFO - iteration 54, current learner lgbm
[flaml.automl: 01-21 08:01:22] {2594} INFO - at 2.0s, estimator lgbm's best error=0.9466, best estimator lgbm's best error=0.9466
[flaml.automl: 01-21 08:01:22] {2434} INFO - iteration 55, current learner lgbm
[flaml.automl: 01-21 08:01:22] {2594} INFO - at 2.0s, estimator lgbm's best error=0.9466, best estimator lgbm's best error=0.9466
[flaml.automl: 01-21 08:01:22] {2434} INFO - iteration 56, current learner xgb_limitdepth
[flaml.automl: 01-21 08:01:22] {2594} INFO - at 2.0s, estimator xgb_limitdepth's best error=0.9683, best estimator lgbm's best error=0.9466
[flaml.automl: 01-21 08:01:22] {2434} INFO - iteration 57, current learner rf
[flaml.automl: 01-21 08:01:22] {2594} INFO - at 2.0s, estimator rf's best error=1.0848, best estimator lgbm's best error=0.9466
[flaml.automl: 01-21 08:01:22] {2434} INFO - iteration 58, current learner xgboost
[flaml.automl: 01-21 08:01:23] {2594} INFO - at 2.1s, estimator xgboost's best error=1.0015, best estimator lgbm's best error=0.9466
[flaml.automl: 01-21 08:01:23] {2434} INFO - iteration 59, current learner extra_tree
[flaml.automl: 01-21 08:01:23] {2594} INFO - at 2.1s, estimator extra_tree's best error=0.9499, best estimator lgbm's best error=0.9466
[flaml.automl: 01-21 08:01:23] {2434} INFO - iteration 60, current learner lgbm
[flaml.automl: 01-21 08:01:23] {2594} INFO - at 2.1s, estimator lgbm's best error=0.9466, best estimator lgbm's best error=0.9466
[flaml.automl: 01-21 08:01:23] {2434} INFO - iteration 61, current learner extra_tree
[flaml.automl: 01-21 08:01:23] {2594} INFO - at 2.1s, estimator extra_tree's best error=0.9499, best estimator lgbm's best error=0.9466
[flaml.automl: 01-21 08:01:23] {2434} INFO - iteration 62, current learner lgbm
[flaml.automl: 01-21 08:01:23] {2594} INFO - at 2.1s, estimator lgbm's best error=0.9466, best estimator lgbm's best error=0.9466
[flaml.automl: 01-21 08:01:23] {2434} INFO - iteration 63, current learner xgb_limitdepth
[flaml.automl: 01-21 08:01:23] {2594} INFO - at 2.2s, estimator xgb_limitdepth's best error=0.9683, best estimator lgbm's best error=0.9466
[flaml.automl: 01-21 08:01:23] {2434} INFO - iteration 64, current learner prophet
[flaml.automl: 01-21 08:01:25] {2594} INFO - at 4.2s, estimator prophet's best error=1.5706, best estimator lgbm's best error=0.9466
[flaml.automl: 01-21 08:01:25] {2434} INFO - iteration 65, current learner arima
[flaml.automl: 01-21 08:01:25] {2594} INFO - at 4.2s, estimator arima's best error=0.5693, best estimator arima's best error=0.5693
[flaml.automl: 01-21 08:01:25] {2434} INFO - iteration 66, current learner arima
[flaml.automl: 01-21 08:01:25] {2594} INFO - at 4.4s, estimator arima's best error=0.5693, best estimator arima's best error=0.5693
[flaml.automl: 01-21 08:01:25] {2434} INFO - iteration 67, current learner sarimax
[flaml.automl: 01-21 08:01:25] {2594} INFO - at 4.4s, estimator sarimax's best error=0.5693, best estimator arima's best error=0.5693
[flaml.automl: 01-21 08:01:25] {2434} INFO - iteration 68, current learner xgb_limitdepth
[flaml.automl: 01-21 08:01:25] {2594} INFO - at 4.5s, estimator xgb_limitdepth's best error=0.9683, best estimator arima's best error=0.5693
[flaml.automl: 01-21 08:01:25] {2434} INFO - iteration 69, current learner sarimax
[flaml.automl: 01-21 08:01:25] {2594} INFO - at 4.6s, estimator sarimax's best error=0.5693, best estimator arima's best error=0.5693
[flaml.automl: 01-21 08:01:25] {2434} INFO - iteration 70, current learner sarimax
[flaml.automl: 01-21 08:01:25] {2594} INFO - at 4.6s, estimator sarimax's best error=0.5693, best estimator arima's best error=0.5693
[flaml.automl: 01-21 08:01:25] {2434} INFO - iteration 71, current learner arima
[flaml.automl: 01-21 08:01:25] {2594} INFO - at 4.6s, estimator arima's best error=0.5693, best estimator arima's best error=0.5693
[flaml.automl: 01-21 08:01:25] {2434} INFO - iteration 72, current learner xgb_limitdepth
[flaml.automl: 01-21 08:01:25] {2594} INFO - at 4.6s, estimator xgb_limitdepth's best error=0.9683, best estimator arima's best error=0.5693
[flaml.automl: 01-21 08:01:25] {2434} INFO - iteration 73, current learner arima
[flaml.automl: 01-21 08:01:25] {2594} INFO - at 4.7s, estimator arima's best error=0.5693, best estimator arima's best error=0.5693
[flaml.automl: 01-21 08:01:25] {2434} INFO - iteration 74, current learner sarimax
[flaml.automl: 01-21 08:01:25] {2594} INFO - at 4.7s, estimator sarimax's best error=0.5693, best estimator arima's best error=0.5693
[flaml.automl: 01-21 08:01:25] {2434} INFO - iteration 75, current learner arima
[flaml.automl: 01-21 08:01:25] {2594} INFO - at 4.8s, estimator arima's best error=0.5693, best estimator arima's best error=0.5693
[flaml.automl: 01-21 08:01:25] {2434} INFO - iteration 76, current learner sarimax
[flaml.automl: 01-21 08:01:25] {2594} INFO - at 4.9s, estimator sarimax's best error=0.5693, best estimator arima's best error=0.5693
[flaml.automl: 01-21 08:01:25] {2434} INFO - iteration 77, current learner arima
[flaml.automl: 01-21 08:01:25] {2594} INFO - at 5.0s, estimator arima's best error=0.5693, best estimator arima's best error=0.5693
[flaml.automl: 01-21 08:01:25] {2434} INFO - iteration 78, current learner sarimax
[flaml.automl: 01-21 08:01:26] {2594} INFO - at 5.1s, estimator sarimax's best error=0.5693, best estimator arima's best error=0.5693
[flaml.automl: 01-21 08:01:26] {2434} INFO - iteration 79, current learner xgb_limitdepth
[flaml.automl: 01-21 08:01:26] {2594} INFO - at 5.1s, estimator xgb_limitdepth's best error=0.9683, best estimator arima's best error=0.5693
[flaml.automl: 01-21 08:01:26] {2434} INFO - iteration 80, current learner xgb_limitdepth
[flaml.automl: 01-21 08:01:26] {2594} INFO - at 5.1s, estimator xgb_limitdepth's best error=0.9683, best estimator arima's best error=0.5693
[flaml.automl: 01-21 08:01:26] {2434} INFO - iteration 81, current learner sarimax
[flaml.automl: 01-21 08:01:26] {2594} INFO - at 5.1s, estimator sarimax's best error=0.5693, best estimator arima's best error=0.5693
[flaml.automl: 01-21 08:01:26] {2434} INFO - iteration 82, current learner prophet
[flaml.automl: 01-21 08:01:27] {2594} INFO - at 6.6s, estimator prophet's best error=1.4076, best estimator arima's best error=0.5693
[flaml.automl: 01-21 08:01:27] {2434} INFO - iteration 83, current learner xgb_limitdepth
[flaml.automl: 01-21 08:01:27] {2594} INFO - at 6.6s, estimator xgb_limitdepth's best error=0.9683, best estimator arima's best error=0.5693
[flaml.automl: 01-21 08:01:27] {2434} INFO - iteration 84, current learner sarimax
[flaml.automl: 01-21 08:01:27] {2594} INFO - at 6.6s, estimator sarimax's best error=0.5693, best estimator arima's best error=0.5693
[flaml.automl: 01-21 08:01:27] {2434} INFO - iteration 85, current learner xgb_limitdepth
[flaml.automl: 01-21 08:01:27] {2594} INFO - at 6.6s, estimator xgb_limitdepth's best error=0.9683, best estimator arima's best error=0.5693
[flaml.automl: 01-21 08:01:27] {2434} INFO - iteration 86, current learner sarimax
[flaml.automl: 01-21 08:01:27] {2594} INFO - at 6.8s, estimator sarimax's best error=0.5693, best estimator arima's best error=0.5693
[flaml.automl: 01-21 08:01:27] {2434} INFO - iteration 87, current learner arima
[flaml.automl: 01-21 08:01:27] {2594} INFO - at 6.8s, estimator arima's best error=0.5693, best estimator arima's best error=0.5693
[flaml.automl: 01-21 08:01:27] {2434} INFO - iteration 88, current learner sarimax
[flaml.automl: 01-21 08:01:27] {2594} INFO - at 6.9s, estimator sarimax's best error=0.5693, best estimator arima's best error=0.5693
[flaml.automl: 01-21 08:01:27] {2434} INFO - iteration 89, current learner arima
[flaml.automl: 01-21 08:01:27] {2594} INFO - at 6.9s, estimator arima's best error=0.5693, best estimator arima's best error=0.5693
[flaml.automl: 01-21 08:01:27] {2434} INFO - iteration 90, current learner arima
[flaml.automl: 01-21 08:01:27] {2594} INFO - at 7.0s, estimator arima's best error=0.5693, best estimator arima's best error=0.5693
[flaml.automl: 01-21 08:01:27] {2434} INFO - iteration 91, current learner xgb_limitdepth
[flaml.automl: 01-21 08:01:27] {2594} INFO - at 7.0s, estimator xgb_limitdepth's best error=0.9683, best estimator arima's best error=0.5693
[flaml.automl: 01-21 08:01:27] {2434} INFO - iteration 92, current learner xgb_limitdepth
[flaml.automl: 01-21 08:01:27] {2594} INFO - at 7.0s, estimator xgb_limitdepth's best error=0.9683, best estimator arima's best error=0.5693
[flaml.automl: 01-21 08:01:27] {2434} INFO - iteration 93, current learner sarimax
[flaml.automl: 01-21 08:01:28] {2594} INFO - at 7.0s, estimator sarimax's best error=0.5600, best estimator sarimax's best error=0.5600
[flaml.automl: 01-21 08:01:28] {2434} INFO - iteration 94, current learner xgb_limitdepth
[flaml.automl: 01-21 08:01:28] {2594} INFO - at 7.1s, estimator xgb_limitdepth's best error=0.9683, best estimator sarimax's best error=0.5600
[flaml.automl: 01-21 08:01:28] {2434} INFO - iteration 95, current learner sarimax
[flaml.automl: 01-21 08:01:28] {2594} INFO - at 7.2s, estimator sarimax's best error=0.5600, best estimator sarimax's best error=0.5600
[flaml.automl: 01-21 08:01:28] {2434} INFO - iteration 96, current learner arima
[flaml.automl: 01-21 08:01:28] {2594} INFO - at 7.2s, estimator arima's best error=0.5693, best estimator sarimax's best error=0.5600
[flaml.automl: 01-21 08:01:28] {2434} INFO - iteration 97, current learner arima
[flaml.automl: 01-21 08:01:28] {2594} INFO - at 7.2s, estimator arima's best error=0.5693, best estimator sarimax's best error=0.5600
[flaml.automl: 01-21 08:01:28] {2434} INFO - iteration 98, current learner extra_tree
[flaml.automl: 01-21 08:01:28] {2594} INFO - at 7.3s, estimator extra_tree's best error=0.9499, best estimator sarimax's best error=0.5600
[flaml.automl: 01-21 08:01:28] {2434} INFO - iteration 99, current learner sarimax
[flaml.automl: 01-21 08:01:28] {2594} INFO - at 7.3s, estimator sarimax's best error=0.5600, best estimator sarimax's best error=0.5600
[flaml.automl: 01-21 08:01:28] {2434} INFO - iteration 100, current learner xgb_limitdepth
[flaml.automl: 01-21 08:01:28] {2594} INFO - at 7.3s, estimator xgb_limitdepth's best error=0.9683, best estimator sarimax's best error=0.5600
Multivariate time series
import statsmodels.api as sm
data = sm.datasets.co2.load_pandas().data
# data is given in weeks, but the task is to predict monthly, so use monthly averages instead
data = data['co2'].resample('MS').mean()
data = data.fillna(data.bfill()) # makes sure there are no missing values
data = data.to_frame().reset_index()
num_samples = data.shape[0]
time_horizon = 12
split_idx = num_samples - time_horizon
train_df = data[:split_idx] # train_df is a dataframe with two columns: timestamp and label
X_test = data[split_idx:]['index'].to_frame() # X_test is a dataframe with dates for prediction
y_test = data[split_idx:]['co2'] # y_test is a series of the values corresponding to the dates for prediction
from flaml import AutoML
automl = AutoML()
settings = {
"time_budget": 10, # total running time in seconds
"metric": 'mape', # primary metric for validation: 'mape' is generally used for forecast tasks
"task": 'ts_forecast', # task type
"log_file_name": 'CO2_forecast.log', # flaml log file
"eval_method": "holdout", # validation method can be chosen from ['auto', 'holdout', 'cv']
"seed": 7654321, # random seed
}
automl.fit(dataframe=train_df, # training data
label='co2', # label column
period=time_horizon, # key word argument 'period' must be included for forecast task)
**settings)
Sample output
[flaml.automl: 01-21 07:54:04] {2018} INFO - task = ts_forecast
[flaml.automl: 01-21 07:54:04] {2020} INFO - Data split method: time
[flaml.automl: 01-21 07:54:04] {2024} INFO - Evaluation method: holdout
[flaml.automl: 01-21 07:54:04] {2124} INFO - Minimizing error metric: mape
Importing plotly failed. Interactive plots will not work.
[flaml.automl: 01-21 07:54:04] {2181} INFO - List of ML learners in AutoML Run: ['lgbm', 'rf', 'xgboost', 'extra_tree', 'xgb_limitdepth', 'prophet', 'arima', 'sarimax']
[flaml.automl: 01-21 07:54:04] {2434} INFO - iteration 0, current learner lgbm
[flaml.automl: 01-21 07:54:05] {2547} INFO - Estimated sufficient time budget=2145s. Estimated necessary time budget=2s.
[flaml.automl: 01-21 07:54:05] {2594} INFO - at 0.9s, estimator lgbm's best error=0.0621, best estimator lgbm's best error=0.0621
[flaml.automl: 01-21 07:54:05] {2434} INFO - iteration 1, current learner lgbm
[flaml.automl: 01-21 07:54:05] {2594} INFO - at 1.0s, estimator lgbm's best error=0.0574, best estimator lgbm's best error=0.0574
[flaml.automl: 01-21 07:54:05] {2434} INFO - iteration 2, current learner lgbm
[flaml.automl: 01-21 07:54:05] {2594} INFO - at 1.0s, estimator lgbm's best error=0.0464, best estimator lgbm's best error=0.0464
[flaml.automl: 01-21 07:54:05] {2434} INFO - iteration 3, current learner lgbm
[flaml.automl: 01-21 07:54:05] {2594} INFO - at 1.0s, estimator lgbm's best error=0.0464, best estimator lgbm's best error=0.0464
[flaml.automl: 01-21 07:54:05] {2434} INFO - iteration 4, current learner lgbm
[flaml.automl: 01-21 07:54:05] {2594} INFO - at 1.0s, estimator lgbm's best error=0.0365, best estimator lgbm's best error=0.0365
[flaml.automl: 01-21 07:54:05] {2434} INFO - iteration 5, current learner lgbm
[flaml.automl: 01-21 07:54:05] {2594} INFO - at 1.1s, estimator lgbm's best error=0.0192, best estimator lgbm's best error=0.0192
[flaml.automl: 01-21 07:54:05] {2434} INFO - iteration 6, current learner lgbm
[flaml.automl: 01-21 07:54:05] {2594} INFO - at 1.1s, estimator lgbm's best error=0.0192, best estimator lgbm's best error=0.0192
[flaml.automl: 01-21 07:54:05] {2434} INFO - iteration 7, current learner lgbm
[flaml.automl: 01-21 07:54:05] {2594} INFO - at 1.1s, estimator lgbm's best error=0.0192, best estimator lgbm's best error=0.0192
[flaml.automl: 01-21 07:54:05] {2434} INFO - iteration 8, current learner lgbm
[flaml.automl: 01-21 07:54:05] {2594} INFO - at 1.2s, estimator lgbm's best error=0.0110, best estimator lgbm's best error=0.0110
[flaml.automl: 01-21 07:54:05] {2434} INFO - iteration 9, current learner lgbm
[flaml.automl: 01-21 07:54:05] {2594} INFO - at 1.2s, estimator lgbm's best error=0.0110, best estimator lgbm's best error=0.0110
[flaml.automl: 01-21 07:54:05] {2434} INFO - iteration 10, current learner lgbm
[flaml.automl: 01-21 07:54:05] {2594} INFO - at 1.2s, estimator lgbm's best error=0.0036, best estimator lgbm's best error=0.0036
[flaml.automl: 01-21 07:54:05] {2434} INFO - iteration 11, current learner lgbm
[flaml.automl: 01-21 07:54:05] {2594} INFO - at 1.4s, estimator lgbm's best error=0.0023, best estimator lgbm's best error=0.0023
[flaml.automl: 01-21 07:54:05] {2434} INFO - iteration 12, current learner lgbm
[flaml.automl: 01-21 07:54:05] {2594} INFO - at 1.4s, estimator lgbm's best error=0.0023, best estimator lgbm's best error=0.0023
[flaml.automl: 01-21 07:54:05] {2434} INFO - iteration 13, current learner lgbm
[flaml.automl: 01-21 07:54:05] {2594} INFO - at 1.5s, estimator lgbm's best error=0.0021, best estimator lgbm's best error=0.0021
[flaml.automl: 01-21 07:54:05] {2434} INFO - iteration 14, current learner lgbm
[flaml.automl: 01-21 07:54:05] {2594} INFO - at 1.6s, estimator lgbm's best error=0.0021, best estimator lgbm's best error=0.0021
[flaml.automl: 01-21 07:54:05] {2434} INFO - iteration 15, current learner lgbm
[flaml.automl: 01-21 07:54:05] {2594} INFO - at 1.7s, estimator lgbm's best error=0.0020, best estimator lgbm's best error=0.0020
[flaml.automl: 01-21 07:54:05] {2434} INFO - iteration 16, current learner lgbm
[flaml.automl: 01-21 07:54:05] {2594} INFO - at 1.8s, estimator lgbm's best error=0.0017, best estimator lgbm's best error=0.0017
[flaml.automl: 01-21 07:54:05] {2434} INFO - iteration 17, current learner lgbm
[flaml.automl: 01-21 07:54:06] {2594} INFO - at 1.9s, estimator lgbm's best error=0.0017, best estimator lgbm's best error=0.0017
[flaml.automl: 01-21 07:54:06] {2434} INFO - iteration 18, current learner lgbm
[flaml.automl: 01-21 07:54:06] {2594} INFO - at 2.0s, estimator lgbm's best error=0.0017, best estimator lgbm's best error=0.0017
[flaml.automl: 01-21 07:54:06] {2434} INFO - iteration 19, current learner lgbm
[flaml.automl: 01-21 07:54:06] {2594} INFO - at 2.1s, estimator lgbm's best error=0.0017, best estimator lgbm's best error=0.0017
[flaml.automl: 01-21 07:54:06] {2434} INFO - iteration 20, current learner rf
[flaml.automl: 01-21 07:54:06] {2594} INFO - at 2.1s, estimator rf's best error=0.0228, best estimator lgbm's best error=0.0017
[flaml.automl: 01-21 07:54:06] {2434} INFO - iteration 21, current learner rf
[flaml.automl: 01-21 07:54:06] {2594} INFO - at 2.1s, estimator rf's best error=0.0210, best estimator lgbm's best error=0.0017
[flaml.automl: 01-21 07:54:06] {2434} INFO - iteration 22, current learner xgboost
[flaml.automl: 01-21 07:54:06] {2594} INFO - at 2.2s, estimator xgboost's best error=0.6738, best estimator lgbm's best error=0.0017
[flaml.automl: 01-21 07:54:06] {2434} INFO - iteration 23, current learner xgboost
[flaml.automl: 01-21 07:54:06] {2594} INFO - at 2.2s, estimator xgboost's best error=0.6738, best estimator lgbm's best error=0.0017
[flaml.automl: 01-21 07:54:06] {2434} INFO - iteration 24, current learner xgboost
[flaml.automl: 01-21 07:54:06] {2594} INFO - at 2.2s, estimator xgboost's best error=0.1717, best estimator lgbm's best error=0.0017
[flaml.automl: 01-21 07:54:06] {2434} INFO - iteration 25, current learner xgboost
[flaml.automl: 01-21 07:54:06] {2594} INFO - at 2.3s, estimator xgboost's best error=0.0249, best estimator lgbm's best error=0.0017
[flaml.automl: 01-21 07:54:06] {2434} INFO - iteration 26, current learner xgboost
[flaml.automl: 01-21 07:54:06] {2594} INFO - at 2.3s, estimator xgboost's best error=0.0249, best estimator lgbm's best error=0.0017
[flaml.automl: 01-21 07:54:06] {2434} INFO - iteration 27, current learner xgboost
[flaml.automl: 01-21 07:54:06] {2594} INFO - at 2.3s, estimator xgboost's best error=0.0242, best estimator lgbm's best error=0.0017
[flaml.automl: 01-21 07:54:06] {2434} INFO - iteration 28, current learner extra_tree
[flaml.automl: 01-21 07:54:06] {2594} INFO - at 2.4s, estimator extra_tree's best error=0.0245, best estimator lgbm's best error=0.0017
[flaml.automl: 01-21 07:54:06] {2434} INFO - iteration 29, current learner extra_tree
[flaml.automl: 01-21 07:54:06] {2594} INFO - at 2.4s, estimator extra_tree's best error=0.0160, best estimator lgbm's best error=0.0017
[flaml.automl: 01-21 07:54:06] {2434} INFO - iteration 30, current learner lgbm
[flaml.automl: 01-21 07:54:06] {2594} INFO - at 2.5s, estimator lgbm's best error=0.0017, best estimator lgbm's best error=0.0017
[flaml.automl: 01-21 07:54:06] {2434} INFO - iteration 31, current learner lgbm
[flaml.automl: 01-21 07:54:06] {2594} INFO - at 2.6s, estimator lgbm's best error=0.0017, best estimator lgbm's best error=0.0017
[flaml.automl: 01-21 07:54:06] {2434} INFO - iteration 32, current learner rf
[flaml.automl: 01-21 07:54:06] {2594} INFO - at 2.6s, estimator rf's best error=0.0210, best estimator lgbm's best error=0.0017
[flaml.automl: 01-21 07:54:06] {2434} INFO - iteration 33, current learner extra_tree
[flaml.automl: 01-21 07:54:06] {2594} INFO - at 2.6s, estimator extra_tree's best error=0.0160, best estimator lgbm's best error=0.0017
[flaml.automl: 01-21 07:54:06] {2434} INFO - iteration 34, current learner lgbm
[flaml.automl: 01-21 07:54:06] {2594} INFO - at 2.8s, estimator lgbm's best error=0.0017, best estimator lgbm's best error=0.0017
[flaml.automl: 01-21 07:54:06] {2434} INFO - iteration 35, current learner extra_tree
[flaml.automl: 01-21 07:54:06] {2594} INFO - at 2.8s, estimator extra_tree's best error=0.0158, best estimator lgbm's best error=0.0017
[flaml.automl: 01-21 07:54:06] {2434} INFO - iteration 36, current learner xgb_limitdepth
[flaml.automl: 01-21 07:54:07] {2594} INFO - at 2.8s, estimator xgb_limitdepth's best error=0.0447, best estimator lgbm's best error=0.0017
[flaml.automl: 01-21 07:54:07] {2434} INFO - iteration 37, current learner xgb_limitdepth
[flaml.automl: 01-21 07:54:07] {2594} INFO - at 2.9s, estimator xgb_limitdepth's best error=0.0447, best estimator lgbm's best error=0.0017
[flaml.automl: 01-21 07:54:07] {2434} INFO - iteration 38, current learner xgb_limitdepth
[flaml.automl: 01-21 07:54:07] {2594} INFO - at 2.9s, estimator xgb_limitdepth's best error=0.0029, best estimator lgbm's best error=0.0017
[flaml.automl: 01-21 07:54:07] {2434} INFO - iteration 39, current learner xgb_limitdepth
[flaml.automl: 01-21 07:54:07] {2594} INFO - at 3.0s, estimator xgb_limitdepth's best error=0.0018, best estimator lgbm's best error=0.0017
[flaml.automl: 01-21 07:54:07] {2434} INFO - iteration 40, current learner xgb_limitdepth
[flaml.automl: 01-21 07:54:07] {2594} INFO - at 3.1s, estimator xgb_limitdepth's best error=0.0018, best estimator lgbm's best error=0.0017
[flaml.automl: 01-21 07:54:07] {2434} INFO - iteration 41, current learner xgb_limitdepth
[flaml.automl: 01-21 07:54:07] {2594} INFO - at 3.1s, estimator xgb_limitdepth's best error=0.0018, best estimator lgbm's best error=0.0017
[flaml.automl: 01-21 07:54:07] {2434} INFO - iteration 42, current learner xgb_limitdepth
[flaml.automl: 01-21 07:54:07] {2594} INFO - at 3.3s, estimator xgb_limitdepth's best error=0.0018, best estimator lgbm's best error=0.0017
[flaml.automl: 01-21 07:54:07] {2434} INFO - iteration 43, current learner prophet
[flaml.automl: 01-21 07:54:09] {2594} INFO - at 5.5s, estimator prophet's best error=0.0008, best estimator prophet's best error=0.0008
[flaml.automl: 01-21 07:54:09] {2434} INFO - iteration 44, current learner arima
[flaml.automl: 01-21 07:54:10] {2594} INFO - at 6.1s, estimator arima's best error=0.0047, best estimator prophet's best error=0.0008
[flaml.automl: 01-21 07:54:10] {2434} INFO - iteration 45, current learner sarimax
[flaml.automl: 01-21 07:54:10] {2594} INFO - at 6.4s, estimator sarimax's best error=0.0047, best estimator prophet's best error=0.0008
[flaml.automl: 01-21 07:54:10] {2434} INFO - iteration 46, current learner lgbm
[flaml.automl: 01-21 07:54:10] {2594} INFO - at 6.5s, estimator lgbm's best error=0.0017, best estimator prophet's best error=0.0008
[flaml.automl: 01-21 07:54:10] {2434} INFO - iteration 47, current learner sarimax
[flaml.automl: 01-21 07:54:10] {2594} INFO - at 6.6s, estimator sarimax's best error=0.0047, best estimator prophet's best error=0.0008
[flaml.automl: 01-21 07:54:10] {2434} INFO - iteration 48, current learner sarimax
[flaml.automl: 01-21 07:54:11] {2594} INFO - at 6.9s, estimator sarimax's best error=0.0047, best estimator prophet's best error=0.0008
[flaml.automl: 01-21 07:54:11] {2434} INFO - iteration 49, current learner arima
[flaml.automl: 01-21 07:54:11] {2594} INFO - at 6.9s, estimator arima's best error=0.0047, best estimator prophet's best error=0.0008
[flaml.automl: 01-21 07:54:11] {2434} INFO - iteration 50, current learner xgb_limitdepth
[flaml.automl: 01-21 07:54:11] {2594} INFO - at 7.0s, estimator xgb_limitdepth's best error=0.0018, best estimator prophet's best error=0.0008
[flaml.automl: 01-21 07:54:11] {2434} INFO - iteration 51, current learner sarimax
[flaml.automl: 01-21 07:54:11] {2594} INFO - at 7.5s, estimator sarimax's best error=0.0047, best estimator prophet's best error=0.0008
[flaml.automl: 01-21 07:54:11] {2434} INFO - iteration 52, current learner xgboost
[flaml.automl: 01-21 07:54:11] {2594} INFO - at 7.6s, estimator xgboost's best error=0.0242, best estimator prophet's best error=0.0008
[flaml.automl: 01-21 07:54:11] {2434} INFO - iteration 53, current learner prophet
[flaml.automl: 01-21 07:54:13] {2594} INFO - at 9.3s, estimator prophet's best error=0.0005, best estimator prophet's best error=0.0005
[flaml.automl: 01-21 07:54:13] {2434} INFO - iteration 54, current learner sarimax
[flaml.automl: 01-21 07:54:13] {2594} INFO - at 9.4s, estimator sarimax's best error=0.0047, best estimator prophet's best error=0.0005
[flaml.automl: 01-21 07:54:13] {2434} INFO - iteration 55, current learner xgb_limitdepth
[flaml.automl: 01-21 07:54:13] {2594} INFO - at 9.8s, estimator xgb_limitdepth's best error=0.0018, best estimator prophet's best error=0.0005
[flaml.automl: 01-21 07:54:13] {2434} INFO - iteration 56, current learner xgboost
[flaml.automl: 01-21 07:54:13] {2594} INFO - at 9.8s, estimator xgboost's best error=0.0242, best estimator prophet's best error=0.0005
[flaml.automl: 01-21 07:54:13] {2434} INFO - iteration 57, current learner lgbm
[flaml.automl: 01-21 07:54:14] {2594} INFO - at 9.9s, estimator lgbm's best error=0.0017, best estimator prophet's best error=0.0005
[flaml.automl: 01-21 07:54:14] {2434} INFO - iteration 58, current learner rf
[flaml.automl: 01-21 07:54:14] {2594} INFO - at 10.0s, estimator rf's best error=0.0146, best estimator prophet's best error=0.0005
[flaml.automl: 01-21 07:54:14] {2824} INFO - retrain prophet for 0.6s
[flaml.automl: 01-21 07:54:14] {2831} INFO - retrained model: <prophet.forecaster.Prophet object at 0x7fb68ea65d60>
[flaml.automl: 01-21 07:54:14] {2210} INFO - fit succeeded
[flaml.automl: 01-21 07:54:14] {2211} INFO - Time taken to find the best model: 9.339771270751953
[flaml.automl: 01-21 07:54:14] {2222} WARNING - Time taken to find the best model is 93% of the provided time budget and not all estimators' hyperparameter search converged. Consider increasing the time budget.
Compute and plot predictions
The example plotting code requires matplotlib.
flaml_y_pred = automl.predict(X_test)
import matplotlib.pyplot as plt
plt.plot(X_test, y_test, label='Actual level')
plt.plot(X_test, flaml_y_pred, label='FLAML forecast')
plt.xlabel('Date')
plt.ylabel('CO2 Levels')
plt.legend()