mirror of
https://github.com/microsoft/autogen.git
synced 2025-07-22 00:11:28 +00:00

* fix a bug when using ray & update ray on aml When using with_parameters(), the config argument must be the first argument in the trainable function. * make training function runnable standalone
169 lines
6.0 KiB
Markdown
169 lines
6.0 KiB
Markdown
FLAML can be used together with AzureML. On top of that, using mlflow and ray is easy too.
|
|
|
|
### Prerequisites
|
|
|
|
Install the [azureml] option.
|
|
```bash
|
|
pip install "flaml[azureml]"
|
|
```
|
|
|
|
Setup a AzureML workspace:
|
|
```python
|
|
from azureml.core import Workspace
|
|
|
|
ws = Workspace.create(name='myworkspace', subscription_id='<azure-subscription-id>',resource_group='myresourcegroup')
|
|
```
|
|
|
|
### Enable mlflow in AzureML workspace
|
|
|
|
```python
|
|
import mlflow
|
|
from azureml.core import Workspace
|
|
|
|
ws = Workspace.from_config()
|
|
mlflow.set_tracking_uri(ws.get_mlflow_tracking_uri())
|
|
```
|
|
|
|
### Start an AutoML run
|
|
|
|
```python
|
|
from flaml.data import load_openml_dataset
|
|
from flaml import AutoML
|
|
|
|
# Download [Airlines dataset](https://www.openml.org/d/1169) from OpenML. The task is to predict whether a given flight will be delayed, given the information of the scheduled departure.
|
|
X_train, X_test, y_train, y_test = load_openml_dataset(dataset_id=1169, data_dir="./")
|
|
|
|
automl = AutoML()
|
|
settings = {
|
|
"time_budget": 60, # total running time in seconds
|
|
"metric": "accuracy", # metric to optimize
|
|
"task": "classification", # task type
|
|
"log_file_name": "airlines_experiment.log", # flaml log file
|
|
}
|
|
experiment = mlflow.set_experiment("flaml") # the experiment name in AzureML workspace
|
|
with mlflow.start_run() as run: # create a mlflow run
|
|
automl.fit(X_train=X_train, y_train=y_train, **settings)
|
|
mlflow.sklearn.log_model(automl, "automl")
|
|
```
|
|
|
|
The metrics in the run will be automatically logged in an experiment named "flaml" in your AzureML workspace. They can be retrieved by `mlflow.search_runs`:
|
|
|
|
```python
|
|
mlflow.search_runs(experiment_ids=[experiment.experiment_id], filter_string="params.learner = 'xgboost'")
|
|
```
|
|
|
|
The logged model can be loaded and used to make predictions:
|
|
```python
|
|
automl = mlflow.sklearn.load_model(f"{run.info.artifact_uri}/automl")
|
|
print(automl.predict(X_test))
|
|
```
|
|
|
|
[Link to notebook](https://github.com/microsoft/FLAML/blob/main/notebook/integrate_azureml.ipynb) | [Open in colab](https://colab.research.google.com/github/microsoft/FLAML/blob/main/notebook/integrate_azureml.ipynb)
|
|
|
|
### Use ray to distribute across a cluster
|
|
|
|
When you have a compute cluster in AzureML, you can distribute `flaml.AutoML` or `flaml.tune` with ray.
|
|
|
|
#### Build a ray environment in AzureML
|
|
|
|
Create a docker file such as [.Docker/Dockerfile-cpu](https://github.com/microsoft/FLAML/blob/main/test/.Docker/Dockerfile-cpu). Make sure `RUN pip install flaml[blendsearch,ray]` is included in the docker file.
|
|
|
|
Then build a AzureML environment in the workspace `ws`.
|
|
|
|
```python
|
|
ray_environment_name = "aml-ray-cpu"
|
|
ray_environment_dockerfile_path = "./Docker/Dockerfile-cpu"
|
|
|
|
# Build CPU image for Ray
|
|
ray_cpu_env = Environment.from_dockerfile(name=ray_environment_name, dockerfile=ray_environment_dockerfile_path)
|
|
ray_cpu_env.register(workspace=ws)
|
|
ray_cpu_build_details = ray_cpu_env.build(workspace=ws)
|
|
|
|
import time
|
|
while ray_cpu_build_details.status not in ["Succeeded", "Failed"]:
|
|
print(f"Awaiting completion of ray CPU environment build. Current status is: {ray_cpu_build_details.status}")
|
|
time.sleep(10)
|
|
```
|
|
|
|
You only need to do this step once for one workspace.
|
|
|
|
#### Create a compute cluster with multiple nodes
|
|
|
|
```python
|
|
from azureml.core.compute import AmlCompute, ComputeTarget
|
|
|
|
compute_target_name = "cpucluster"
|
|
node_count = 2
|
|
|
|
# This example uses CPU VM. For using GPU VM, set SKU to STANDARD_NC6
|
|
compute_target_size = "STANDARD_D2_V2"
|
|
|
|
if compute_target_name in ws.compute_targets:
|
|
compute_target = ws.compute_targets[compute_target_name]
|
|
if compute_target and type(compute_target) is AmlCompute:
|
|
if compute_target.provisioning_state == "Succeeded":
|
|
print("Found compute target; using it:", compute_target_name)
|
|
else:
|
|
raise Exception(
|
|
"Found compute target but it is in state", compute_target.provisioning_state)
|
|
else:
|
|
print("creating a new compute target...")
|
|
provisioning_config = AmlCompute.provisioning_configuration(
|
|
vm_size=compute_target_size,
|
|
min_nodes=0,
|
|
max_nodes=node_count)
|
|
|
|
# Create the cluster
|
|
compute_target = ComputeTarget.create(ws, compute_target_name, provisioning_config)
|
|
|
|
# Can poll for a minimum number of nodes and for a specific timeout.
|
|
# If no min node count is provided it will use the scale settings for the cluster
|
|
compute_target.wait_for_completion(show_output=True, min_node_count=None, timeout_in_minutes=20)
|
|
|
|
# For a more detailed view of current AmlCompute status, use get_status()
|
|
print(compute_target.get_status().serialize())
|
|
```
|
|
|
|
If the computer target "cpucluster" already exists, it will not be recreated.
|
|
|
|
#### Run distributed AutoML job
|
|
|
|
Assuming you have an automl script like [ray/distribute_automl.py](https://github.com/microsoft/FLAML/blob/main/test/ray/distribute_automl.py). It uses `n_concurrent_trials=k` to inform `AutoML.fit()` to perform k concurrent trials in parallel.
|
|
|
|
Submit an AzureML job as the following:
|
|
|
|
```python
|
|
from azureml.core import Workspace, Experiment, ScriptRunConfig, Environment
|
|
from azureml.core.runconfig import RunConfiguration, DockerConfiguration
|
|
|
|
command = ["python distribute_automl.py"]
|
|
ray_environment_name = "aml-ray-cpu"
|
|
env = Environment.get(workspace=ws, name=ray_environment_name)
|
|
aml_run_config = RunConfiguration(communicator="OpenMpi")
|
|
aml_run_config.target = compute_target
|
|
aml_run_config.docker = DockerConfiguration(use_docker=True)
|
|
aml_run_config.environment = env
|
|
aml_run_config.node_count = 2
|
|
config = ScriptRunConfig(
|
|
source_directory="ray/",
|
|
command=command,
|
|
run_config=aml_run_config,
|
|
)
|
|
|
|
exp = Experiment(ws, "distribute-automl")
|
|
run = exp.submit(config)
|
|
|
|
print(run.get_portal_url()) # link to ml.azure.com
|
|
run.wait_for_completion(show_output=True)
|
|
```
|
|
|
|
#### Run distributed tune job
|
|
|
|
Prepare a script like [ray/distribute_tune.py](https://github.com/microsoft/FLAML/blob/main/test/ray/distribute_tune.py). Replace the command in the above eample with:
|
|
|
|
```python
|
|
command = ["python distribute_tune.py"]
|
|
```
|
|
|
|
Everything else is the same.
|