autogen/test/agentchat/contrib/test_gpt_assistant.py
gagb df2cd36dee
Refactor GPTAssistantAgent (#632)
* Refactor GPTAssistantAgent constructor to handle
instructions and overwrite_instructions flag

- Ensure that `system_message` is always consistent with `instructions`
- Ensure provided instructions are always used
- Add option to permanently modify the instructions of the assistant

* Improve default behavior

* Add a test; add method to delete assistant

* Add a new test for overwriting instructions

* Add test case for when no instructions are given for existing assistant

* Add pytest markers to test_gpt_assistant.py

* add test in workflow

* update

* fix test_client_stream

* comment out test_hierarchy_

---------

Co-authored-by: Chi Wang <wang.chi@microsoft.com>
Co-authored-by: kevin666aa <yrwu000627@gmail.com>
2023-11-12 06:03:51 +00:00

177 lines
5.9 KiB
Python

import pytest
import os
import sys
import autogen
sys.path.append(os.path.join(os.path.dirname(__file__), ".."))
from test_assistant_agent import KEY_LOC, OAI_CONFIG_LIST # noqa: E402
try:
from autogen.agentchat.contrib.gpt_assistant_agent import GPTAssistantAgent
skip_test = False
except ImportError:
skip_test = True
def ask_ossinsight(question):
return f"That is a good question, but I don't know the answer yet. Please ask your human developer friend to help you. \n\n{question}"
@pytest.mark.skipif(
sys.platform in ["darwin", "win32"] or skip_test,
reason="do not run on MacOS or windows or dependency is not installed",
)
def test_gpt_assistant_chat():
ossinsight_api_schema = {
"name": "ossinsight_data_api",
"parameters": {
"type": "object",
"properties": {
"question": {
"type": "string",
"description": "Enter your GitHub data question in the form of a clear and specific question to ensure the returned data is accurate and valuable. For optimal results, specify the desired format for the data table in your request.",
}
},
"required": ["question"],
},
"description": "This is an API endpoint allowing users (analysts) to input question about GitHub in text format to retrieve the realted and structured data.",
}
config_list = autogen.config_list_from_json(OAI_CONFIG_LIST, file_location=KEY_LOC)
analyst = GPTAssistantAgent(
name="Open_Source_Project_Analyst",
llm_config={"tools": [{"type": "function", "function": ossinsight_api_schema}], "config_list": config_list},
instructions="Hello, Open Source Project Analyst. You'll conduct comprehensive evaluations of open source projects or organizations on the GitHub platform",
)
analyst.register_function(
function_map={
"ossinsight_data_api": ask_ossinsight,
}
)
ok, response = analyst._invoke_assistant(
[{"role": "user", "content": "What is the most popular open source project on GitHub?"}]
)
assert ok is True
assert response.get("role", "") == "assistant"
assert len(response.get("content", "")) > 0
assert analyst.can_execute_function("ossinsight_data_api") is False
analyst.reset()
assert len(analyst._openai_threads) == 0
@pytest.mark.skipif(
sys.platform in ["darwin", "win32"] or skip_test,
reason="do not run on MacOS or windows or dependency is not installed",
)
def test_get_assistant_instructions():
"""
Test function to create a new GPTAssistantAgent, set its instructions, retrieve the instructions,
and assert that the retrieved instructions match the set instructions.
"""
config_list = autogen.config_list_from_json(OAI_CONFIG_LIST, file_location=KEY_LOC)
assistant = GPTAssistantAgent(
"assistant",
instructions="This is a test",
llm_config={
"config_list": config_list,
},
)
instruction_match = assistant.get_assistant_instructions() == "This is a test"
assistant.delete_assistant()
assert instruction_match is True
@pytest.mark.skipif(
sys.platform in ["darwin", "win32"] or skip_test,
reason="do not run on MacOS or windows or dependency is not installed",
)
def test_gpt_assistant_instructions_overwrite():
"""
Test that the instructions of a GPTAssistantAgent can be overwritten or not depending on the value of the
`overwrite_instructions` parameter when creating a new assistant with the same ID.
Steps:
1. Create a new GPTAssistantAgent with some instructions.
2. Get the ID of the assistant.
3. Create a new GPTAssistantAgent with the same ID but different instructions and `overwrite_instructions=True`.
4. Check that the instructions of the assistant have been overwritten with the new ones.
"""
instructions1 = "This is a test #1"
instructions2 = "This is a test #2"
config_list = autogen.config_list_from_json(OAI_CONFIG_LIST, file_location=KEY_LOC)
assistant = GPTAssistantAgent(
"assistant",
instructions=instructions1,
llm_config={
"config_list": config_list,
},
)
assistant_id = assistant.assistant_id
assistant = GPTAssistantAgent(
"assistant",
instructions=instructions2,
llm_config={
"config_list": config_list,
"assistant_id": assistant_id,
},
overwrite_instructions=True,
)
instruction_match = assistant.get_assistant_instructions() == instructions2
assistant.delete_assistant()
assert instruction_match is True
@pytest.mark.skipif(
sys.platform in ["darwin", "win32"] or skip_test,
reason="do not run on MacOS or windows or dependency is not installed",
)
def test_gpt_assistant_existing_no_instructions():
"""
Test function to check if the GPTAssistantAgent can retrieve instructions for an existing assistant
even if the assistant was created with no instructions initially.
"""
instructions = "This is a test #1"
config_list = autogen.config_list_from_json(OAI_CONFIG_LIST, file_location=KEY_LOC)
assistant = GPTAssistantAgent(
"assistant",
instructions=instructions,
llm_config={
"config_list": config_list,
},
)
assistant_id = assistant.assistant_id
# create a new assistant with the same ID but no instructions
assistant = GPTAssistantAgent(
"assistant",
llm_config={
"config_list": config_list,
"assistant_id": assistant_id,
},
)
instruction_match = assistant.get_assistant_instructions() == instructions
assistant.delete_assistant()
assert instruction_match is True
if __name__ == "__main__":
test_gpt_assistant_chat()
test_get_assistant_instructions()
test_gpt_assistant_instructions_overwrite()
test_gpt_assistant_existing_no_instructions()