mirror of
				https://github.com/microsoft/autogen.git
				synced 2025-10-30 17:29:47 +00:00 
			
		
		
		
	 f718d18b5e
			
		
	
	
		f718d18b5e
		
			
		
	
	
	
	
		
			
			* time series forecasting with panel datasets - integrate Temporal Fusion Transformer as a learner based on pytorchforecasting Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com> * update setup.py Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com> * update test_forecast.py Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com> * update setup.py Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com> * update setup.py Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com> * update model.py and test_forecast.py - remove blank lines Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com> * update model.py to prevent errors Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com> * update automl.py and data.py - change forecast task name - update documentation for fit() method Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com> * update test_forecast.py Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com> * update test_forecast.py - add performance test - use 'fit_kwargs_by_estimator' Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com> * add time index function Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com> * update test_forecast.py performance test Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com> * update data.py Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com> * update automl.py Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com> * update data.py to prevent type error Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com> * update setup.py Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com> * update for pytorch forecasting tft on panel datasets Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com> * update automl.py documentations Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com> * - rename estimator - add 'gpu_per_trial' for tft estimator Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com> * update test_forecast.py Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com> * include ts panel forecasting as an example Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com> * update model.py Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com> * update documentations Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com> * update automl_time_series_forecast.ipynb Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com> * update documentations Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com> * "weights_summary" argument deprecated and removed for pl.Trainer() Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com> * update model.py tft estimator prediction method Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com> * update model.py Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com> * update `fit_kwargs` documentation Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com> * update automl.py Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com> Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com> Co-authored-by: Chi Wang <wang.chi@microsoft.com>
		
			
				
	
	
		
			113 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			113 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import setuptools
 | |
| import os
 | |
| 
 | |
| here = os.path.abspath(os.path.dirname(__file__))
 | |
| 
 | |
| with open("README.md", "r", encoding="UTF-8") as fh:
 | |
|     long_description = fh.read()
 | |
| 
 | |
| 
 | |
| # Get the code version
 | |
| version = {}
 | |
| with open(os.path.join(here, "flaml/version.py")) as fp:
 | |
|     exec(fp.read(), version)
 | |
| __version__ = version["__version__"]
 | |
| 
 | |
| install_requires = [
 | |
|     "NumPy>=1.17.0rc1",
 | |
|     "lightgbm>=2.3.1",
 | |
|     "xgboost>=0.90",
 | |
|     "scipy>=1.4.1",
 | |
|     "pandas>=1.1.4",
 | |
|     "scikit-learn>=0.24",
 | |
| ]
 | |
| 
 | |
| 
 | |
| setuptools.setup(
 | |
|     name="FLAML",
 | |
|     version=__version__,
 | |
|     author="Microsoft Corporation",
 | |
|     author_email="hpo@microsoft.com",
 | |
|     description="A fast library for automated machine learning and tuning",
 | |
|     long_description=long_description,
 | |
|     long_description_content_type="text/markdown",
 | |
|     url="https://github.com/microsoft/FLAML",
 | |
|     packages=setuptools.find_packages(include=["flaml*"]),
 | |
|     package_data={
 | |
|         "flaml.default": ["*/*.json"],
 | |
|     },
 | |
|     include_package_data=True,
 | |
|     install_requires=install_requires,
 | |
|     extras_require={
 | |
|         "notebook": [
 | |
|             "openml==0.10.2",
 | |
|             "jupyter",
 | |
|             "matplotlib",
 | |
|             "rgf-python",
 | |
|             "catboost>=0.26",
 | |
|         ],
 | |
|         "test": [
 | |
|             "flake8>=3.8.4",
 | |
|             "pytest>=6.1.1",
 | |
|             "coverage>=5.3",
 | |
|             "pre-commit",
 | |
|             "catboost>=0.26",
 | |
|             "rgf-python",
 | |
|             "optuna==2.8.0",
 | |
|             "vowpalwabbit",
 | |
|             "openml",
 | |
|             "statsmodels>=0.12.2",
 | |
|             "psutil==5.8.0",
 | |
|             "dataclasses",
 | |
|             "transformers[torch]==4.18",
 | |
|             "datasets",
 | |
|             "nltk",
 | |
|             "rouge_score",
 | |
|             "hcrystalball==0.1.10",
 | |
|             "seqeval",
 | |
|             "pytorch-forecasting>=0.9.0",
 | |
|         ],
 | |
|         "catboost": ["catboost>=0.26"],
 | |
|         "blendsearch": ["optuna==2.8.0"],
 | |
|         "ray": [
 | |
|             "ray[tune]~=1.13",
 | |
|         ],
 | |
|         "azureml": [
 | |
|             "azureml-mlflow",
 | |
|         ],
 | |
|         "nni": [
 | |
|             "nni",
 | |
|         ],
 | |
|         "vw": [
 | |
|             "vowpalwabbit",
 | |
|         ],
 | |
|         "nlp": [
 | |
|             "transformers[torch]==4.18",
 | |
|             "datasets",
 | |
|             "nltk",
 | |
|             "rouge_score",
 | |
|             "seqeval",
 | |
|         ],
 | |
|         "ts_forecast": [
 | |
|             "holidays<0.14",  # to prevent installation error for prophet
 | |
|             "prophet>=1.0.1",
 | |
|             "statsmodels>=0.12.2",
 | |
|             "hcrystalball==0.1.10",
 | |
|         ],
 | |
|         "forecast": [
 | |
|             "holidays<0.14",  # to prevent installation error for prophet
 | |
|             "prophet>=1.0.1",
 | |
|             "statsmodels>=0.12.2",
 | |
|             "hcrystalball==0.1.10",
 | |
|             "pytorch-forecasting>=0.9.0",
 | |
|         ],
 | |
|         "benchmark": ["catboost>=0.26", "psutil==5.8.0", "xgboost==1.3.3"],
 | |
|     },
 | |
|     classifiers=[
 | |
|         "Programming Language :: Python :: 3",
 | |
|         "License :: OSI Approved :: MIT License",
 | |
|         "Operating System :: OS Independent",
 | |
|     ],
 | |
|     python_requires=">=3.6",
 | |
| )
 |