autogen/test/test_autohf_classificationhead.py
Xueqing Liu 42de3075e9
Make NLP tasks available from AutoML.fit() (#210)
Sequence classification and regression: "seq-classification" and "seq-regression"

Co-authored-by: Chi Wang <wang.chi@microsoft.com>
2021-11-16 11:06:20 -08:00

43 lines
1.1 KiB
Python

def test_classification_head():
try:
import ray
except ImportError:
return
from flaml import AutoML
from datasets import load_dataset
train_dataset = load_dataset("emotion", split="train[:1%]").to_pandas().iloc[0:10]
dev_dataset = load_dataset("emotion", split="train[1%:2%]").to_pandas().iloc[0:10]
custom_sent_keys = ["text"]
label_key = "label"
X_train = train_dataset[custom_sent_keys]
y_train = train_dataset[label_key]
X_val = dev_dataset[custom_sent_keys]
y_val = dev_dataset[label_key]
automl = AutoML()
automl_settings = {
"gpu_per_trial": 0,
"max_iter": 3,
"time_budget": 20,
"task": "seq-classification",
"metric": "accuracy",
"model_history": True,
}
automl_settings["custom_hpo_args"] = {
"model_path": "google/electra-small-discriminator",
"output_dir": "data/output/",
"ckpt_per_epoch": 5,
"fp16": False,
}
automl.fit(
X_train=X_train, y_train=y_train, X_val=X_val, y_val=y_val, **automl_settings
)