mirror of
https://github.com/microsoft/autogen.git
synced 2025-09-12 09:45:41 +00:00

* Refactor into automl subpackage Moved some of the packages into an automl subpackage to tidy before the task-based refactor. This is in response to discussions with the group and a comment on the first task-based PR. Only changes here are moving subpackages and modules into the new automl, fixing imports to work with this structure and fixing some dependencies in setup.py. * Fix doc building post automl subpackage refactor * Fix broken links in website post automl subpackage refactor * Fix broken links in website post automl subpackage refactor * Remove vw from test deps as this is breaking the build * Move default back to the top-level I'd moved this to automl as that's where it's used internally, but had missed that this is actually part of the public interface so makes sense to live where it was. * Re-add top level modules with deprecation warnings flaml.data, flaml.ml and flaml.model are re-added to the top level, being re-exported from flaml.automl for backwards compatability. Adding a deprecation warning so that we can have a planned removal later. * Fix model.py line-endings * WIP * WIP - Notes below Got to the point where the methods from AutoML are pulled to GenericTask. Started removing private markers and removing the passing of automl to these methods. Done with decide_split_type, started on prepare_data. Need to do the others after * Re-add generic_task * Most of the merge done, test_forecast_automl fit succeeds, fails at predict() * Remaining fixes - test_forecast.py passes * Comment out holidays-related code as it's not currently used * Further holidays cleanup * Fix imports in a test * tidy up validate_data in time series task * Test fixes * Fix tests: add Task.__str__ * Fix tests: test for ray.ObjectRef * Hotwire TS_Sklearn wrapper to fix test fail * Attempt at test fix * Fix test where val_pred_y is a list * Attempt to fix remaining tests * Push to retrigger tests * Push to retrigger tests * Push to retrigger tests * Push to retrigger tests * Remove plots from automl/test_forecast * Remove unused data size field from Task * Fix import for CLASSIFICATION in notebook * Monkey patch TFT to avoid plotting, to fix tests on MacOS * Monkey patch TFT to avoid plotting v2, to fix tests on MacOS * Monkey patch TFT to avoid plotting v2, to fix tests on MacOS * Fix circular import * remove redundant code in task.py post-merge * Fix test: set svd_solver="full" in PCA * Update flaml/automl/data.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * Fix review comments * Fix task -> str in custom learner constructor * Remove unused CLASSIFICATION imports * Hotwire TS_Sklearn wrapper to fix test fail by setting optimizer_for_horizon == False * Revert changes to the automl_classification and pin FLAML version * Fix imports in reverted notebook * Fix FLAML version in automl notebooks * Fix ml.py line endings * Fix CLASSIFICATION task import in automl_classification notebook * Uncomment pip install in notebook and revert import Not convinced this will work because of installing an older version of the package into the environment in which we're running the tests, but let's see. * Revert c6a5dd1a0 * Fix get_classification_objective import in suggest.py * Remove hcrystallball docs reference in TS_Sklearn * Merge markharley:extract-task-class-from-automl into this * Fix import, remove smooth.py * Fix dependencies to fix TFT fail on Windows Python 3.8 and 3.9 * Add tensorboardX dependency to fix TFT fail on Windows Python 3.8 and 3.9 * Set pytorch-lightning==1.9.0 to fix TFT fail on Windows Python 3.8 and 3.9 * Set pytorch-lightning==1.9.0 to fix TFT fail on Windows Python 3.8 and 3.9 * Disable PCA reduction of lagged features for now, to fix svd convervence fail * Merge flaml/main into time_series_task * Attempt to fix formatting * Attempt to fix formatting * tentatively implement holt-winters-no covariates * fix forecast method, clean class * checking external regressors too * update test forecast * remove duplicated test file, re-add sarimax, search space cleanup * Update flaml/automl/model.py removed links. Most important one probably was: https://robjhyndman.com/hyndsight/ets-regressors/ Co-authored-by: Chi Wang <wang.chi@microsoft.com> * prevent short series * add docs * First attempt at merging Holt-Winters * Linter fix * Add holt-winters to TimeSeriesTask.estimators * Fix spark test fail * Attempt to fix another spark test fail * Attempt to fix another spark test fail * Change Black max line length to 127 * Change Black max line length to 120 * Add logging for ARIMA params, clean up time series models inheritance * Add more logging for missing ARIMA params * Remove a meaningless test causing a fail, add stricter check on ARIMA params * Fix a bug in HoltWinters * A pointless change to hopefully trigger the on and off KeyError in ARIMA.fit() * Fix formatting * Attempt to fix formatting * Attempt to fix formatting * Attempt to fix formatting * Attempt to fix formatting * Add type annotations to _train_with_config() in state.py * Add type annotations to prepare_sample_train_data() in state.py * Add docstring for time_col argument of AutoML.fit() * Address @sonichi's comments on PR * Fix formatting * Fix formatting * Reduce test time budget * Reduce test time budget * Increase time budget for the test to pass * Remove redundant imports * Remove more redundant imports * Minor fixes of points raised by Qingyun * Try to fix pandas import fail * Try to fix pandas import fail, again * Try to fix pandas import fail, again * Try to fix pandas import fail, again * Try to fix pandas import fail, again * Try to fix pandas import fail, again * Try to fix pandas import fail, again * Try to fix pandas import fail, again * Try to fix pandas import fail, again * Try to fix pandas import fail, again * Try to fix pandas import fail, again * Formatting fixes * More formatting fixes * Added test that loops over TS models to ensure coverage * Fix formatting issues * Fix more formatting issues * Fix random fail in check * Put back in tests for ARIMA predict without fit * Put back in tests for lgbm * Update test/test_model.py cover dedup * Match target length to X length in missing test --------- Co-authored-by: Mark Harley <mark.harley@transferwise.com> Co-authored-by: Mark Harley <mharley.code@gmail.com> Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu> Co-authored-by: Chi Wang <wang.chi@microsoft.com> Co-authored-by: Andrea W <a.ruggerini@ammagamma.com> Co-authored-by: Andrea Ruggerini <nescio.adv@gmail.com> Co-authored-by: Egor Kraev <Egor.Kraev@tw.com> Co-authored-by: Li Jiang <bnujli@gmail.com>
524 lines
19 KiB
Python
524 lines
19 KiB
Python
import logging
|
|
import time
|
|
from typing import List
|
|
|
|
import pandas as pd
|
|
import numpy as np
|
|
from scipy.sparse import issparse
|
|
from sklearn.model_selection import (
|
|
GroupKFold,
|
|
TimeSeriesSplit,
|
|
)
|
|
|
|
from flaml.automl.ml import get_val_loss, default_cv_score_agg_func
|
|
from flaml.automl.time_series.ts_data import (
|
|
TimeSeriesDataset,
|
|
DataTransformerTS,
|
|
normalize_ts_data,
|
|
)
|
|
|
|
from flaml.automl.task.task import (
|
|
Task,
|
|
get_classification_objective,
|
|
TS_FORECAST,
|
|
TS_FORECASTPANEL,
|
|
)
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class TimeSeriesTask(Task):
|
|
@property
|
|
def estimators(self):
|
|
if self._estimators is None:
|
|
# put this into a function to avoid circular dependency
|
|
from flaml.automl.time_series import (
|
|
XGBoost_TS,
|
|
XGBoostLimitDepth_TS,
|
|
RF_TS,
|
|
LGBM_TS,
|
|
ExtraTrees_TS,
|
|
CatBoost_TS,
|
|
Prophet,
|
|
Orbit,
|
|
ARIMA,
|
|
SARIMAX,
|
|
TemporalFusionTransformerEstimator,
|
|
HoltWinters,
|
|
)
|
|
|
|
self._estimators = {
|
|
"xgboost": XGBoost_TS,
|
|
"xgb_limitdepth": XGBoostLimitDepth_TS,
|
|
"rf": RF_TS,
|
|
"lgbm": LGBM_TS,
|
|
"extra_tree": ExtraTrees_TS,
|
|
"arima": ARIMA,
|
|
"sarimax": SARIMAX,
|
|
"holt-winters": HoltWinters,
|
|
"catboost": CatBoost_TS,
|
|
"tft": TemporalFusionTransformerEstimator,
|
|
}
|
|
|
|
try:
|
|
from prophet import Prophet as foo
|
|
|
|
self._estimators["prophet"] = Prophet
|
|
except ImportError:
|
|
logger.info("Couldn't import Prophet, skipping")
|
|
|
|
try:
|
|
from orbit.models import DLT
|
|
|
|
self._estimators["orbit"] = Orbit
|
|
except ImportError:
|
|
logger.info("Couldn't import Prophet, skipping")
|
|
|
|
return self._estimators
|
|
|
|
# processed
|
|
def validate_data(
|
|
self,
|
|
automl,
|
|
state,
|
|
X_train_all,
|
|
y_train_all,
|
|
dataframe,
|
|
label,
|
|
X_val=None,
|
|
y_val=None,
|
|
groups_val=None,
|
|
groups=None,
|
|
):
|
|
# first beat the data into a TimeSeriesDataset shape
|
|
if isinstance(X_train_all, TimeSeriesDataset):
|
|
# in this case, we're most likely being called by another FLAML instance
|
|
# so all the preliminary cleaning has already been done
|
|
pre_data = X_train_all
|
|
val_len = len(pre_data.X_val)
|
|
else:
|
|
if label is None and dataframe is not None:
|
|
raise ValueError("If data is specified via dataframe parameter, you must also specify label")
|
|
|
|
if isinstance(y_train_all, pd.Series):
|
|
label = y_train_all.name
|
|
elif isinstance(y_train_all, np.ndarray):
|
|
label = "y" # Prophet convention
|
|
|
|
if isinstance(label, str):
|
|
target_names = [label]
|
|
else:
|
|
target_names = label
|
|
|
|
if self.time_col is None:
|
|
if isinstance(X_train_all, pd.DataFrame):
|
|
assert dataframe is None, "One of dataframe and X arguments must be None"
|
|
self.time_col = X_train_all.columns[0]
|
|
elif dataframe is not None:
|
|
assert X_train_all is None, "One of dataframe and X arguments must be None"
|
|
self.time_col = dataframe.columns[0]
|
|
else:
|
|
self.time_col = "ds"
|
|
|
|
automl._df = True
|
|
|
|
if X_train_all is not None:
|
|
assert y_train_all is not None, "If X_train_all is not None, y_train_all must also be"
|
|
assert dataframe is None, "If X_train_all is provided, dataframe must be None"
|
|
dataframe = TimeSeriesDataset.to_dataframe(X_train_all, y_train_all, target_names, self.time_col)
|
|
|
|
elif dataframe is not None:
|
|
assert label is not None, "A label or list of labels must be provided."
|
|
assert isinstance(dataframe, pd.DataFrame), "dataframe must be a pandas DataFrame"
|
|
assert label in dataframe.columns, f"{label} must a column name in dataframe"
|
|
else:
|
|
raise ValueError("Must supply either X_train_all and y_train_all, or dataframe and label")
|
|
|
|
try:
|
|
dataframe[self.time_col] = pd.to_datetime(dataframe[self.time_col])
|
|
except Exception:
|
|
raise ValueError(
|
|
f"For '{TS_FORECAST}' task, time column {self.time_col} must contain timestamp values."
|
|
)
|
|
|
|
dataframe = remove_ts_duplicates(dataframe, self.time_col)
|
|
|
|
if X_val is not None:
|
|
assert y_val is not None, "If X_val is not None, y_val must also be"
|
|
val_df = TimeSeriesDataset.to_dataframe(X_val, y_val, target_names, self.time_col)
|
|
val_len = len(val_df)
|
|
else:
|
|
val_len = 0
|
|
val_df = None
|
|
|
|
pre_data = TimeSeriesDataset(
|
|
train_data=dataframe,
|
|
time_col=self.time_col,
|
|
target_names=target_names,
|
|
test_data=val_df,
|
|
)
|
|
|
|
# TODO: should the transformer be a property of the dataset instead?
|
|
automl._transformer = DataTransformerTS(self.time_col, label)
|
|
Xt, yt = automl._transformer.fit_transform(pre_data.X_all, pre_data.y_all)
|
|
|
|
df_t = pd.concat([Xt, yt], axis=1)
|
|
|
|
data = TimeSeriesDataset(
|
|
train_data=df_t,
|
|
time_col=pre_data.time_col,
|
|
target_names=pre_data.target_names,
|
|
).move_validation_boundary(-val_len)
|
|
|
|
# now setup the properties of all the other relevant objects
|
|
|
|
# TODO: where are these used? Replace with pointers to data?
|
|
automl._X_train_all, automl._y_train_all = Xt, yt
|
|
|
|
# TODO: where are these used?
|
|
automl._nrow, automl._ndim = data.X_train.shape
|
|
|
|
# make a property instead? Or just fix the call?
|
|
automl._label_transformer = automl._transformer.label_transformer
|
|
|
|
automl._feature_names_in_ = (
|
|
automl._X_train_all.columns.to_list() if hasattr(automl._X_train_all, "columns") else None
|
|
)
|
|
|
|
self.time_col = data.time_col
|
|
self.target_names = data.target_names
|
|
|
|
automl._state.X_val = data
|
|
automl._state.X_train = data
|
|
automl._state.y_train = None
|
|
automl._state.y_val = None
|
|
if data.test_data is not None and len(data.test_data) > 0:
|
|
automl._state.X_train_all = data.move_validation_boundary(len(data.test_data))
|
|
else:
|
|
automl._state.X_train_all = data
|
|
automl._state.y_train_all = None
|
|
|
|
automl._state.data_size = data.train_data.shape
|
|
automl.data_size_full = len(data.all_data)
|
|
automl._state.groups = None
|
|
automl._sample_weight_full = None
|
|
|
|
def prepare_data(
|
|
self,
|
|
state,
|
|
X_train_all,
|
|
y_train_all,
|
|
auto_argument,
|
|
eval_method,
|
|
split_type,
|
|
split_ratio,
|
|
n_splits,
|
|
data_is_df,
|
|
sample_weight_full,
|
|
time_col=None,
|
|
):
|
|
state.kf = None
|
|
state.data_size_full = len(y_train_all)
|
|
|
|
if split_type in ["uniform", "stratified"]:
|
|
raise ValueError(f"Split type {split_type} is not valid for time series")
|
|
|
|
state.groups = None
|
|
state.groups_all = None
|
|
state.groups_val = None
|
|
|
|
ts_data = state.X_val
|
|
no_test_data = ts_data is None or ts_data.test_data is None or len(ts_data.test_data) == 0
|
|
if no_test_data and eval_method == "holdout":
|
|
# NOTE: _prepare_data is before kwargs is updated to fit_kwargs_by_estimator
|
|
period = state.fit_kwargs["period"]
|
|
|
|
if self.name == TS_FORECASTPANEL:
|
|
# TODO: move this into the TimeSeriesDataset class
|
|
X_train_all = ts_data.X_train
|
|
y_train_all = ts_data.y_train
|
|
|
|
X_train_all["time_idx"] -= X_train_all["time_idx"].min()
|
|
X_train_all["time_idx"] = X_train_all["time_idx"].astype("int")
|
|
ids = state.fit_kwargs["group_ids"].copy()
|
|
ids.append(ts_data.time_col)
|
|
ids.append("time_idx")
|
|
y_train_all = pd.DataFrame(y_train_all)
|
|
y_train_all[ids] = X_train_all[ids]
|
|
X_train_all = X_train_all.sort_values(ids)
|
|
y_train_all = y_train_all.sort_values(ids)
|
|
training_cutoff = X_train_all["time_idx"].max() - period
|
|
X_train = X_train_all[lambda x: x.time_idx <= training_cutoff]
|
|
y_train = y_train_all[lambda x: x.time_idx <= training_cutoff].drop(columns=ids)
|
|
X_val = X_train_all[lambda x: x.time_idx > training_cutoff]
|
|
y_val = y_train_all[lambda x: x.time_idx > training_cutoff].drop(columns=ids)
|
|
|
|
train_data = normalize_ts_data(
|
|
X_train,
|
|
ts_data.target_names,
|
|
ts_data.time_col,
|
|
y_train,
|
|
)
|
|
test_data = normalize_ts_data(
|
|
X_val,
|
|
ts_data.target_names,
|
|
ts_data.time_col,
|
|
y_val,
|
|
)
|
|
ts_data = TimeSeriesDataset(
|
|
train_data,
|
|
ts_data.time_col,
|
|
ts_data.target_names,
|
|
ts_data.frequency,
|
|
test_data,
|
|
)
|
|
state.X_val = ts_data
|
|
state.X_train = ts_data
|
|
|
|
else:
|
|
# if eval_method = holdout, make holdout data
|
|
num_samples = ts_data.train_data.shape[0]
|
|
assert period < num_samples, f"period={period}>#examples={num_samples}"
|
|
state.X_val = ts_data.move_validation_boundary(-period)
|
|
state.X_train = state.X_val
|
|
|
|
if eval_method != "holdout":
|
|
if self.name != TS_FORECASTPANEL:
|
|
period = state.fit_kwargs[
|
|
"period"
|
|
] # NOTE: _prepare_data is before kwargs is updated to fit_kwargs_by_estimator
|
|
step_size = state.fit_kwargs.get("cv_step_size", period)
|
|
|
|
ts_data = state.X_train
|
|
if n_splits * step_size + 2 * period > ts_data.y_train.size:
|
|
n_splits = int((ts_data.y_train.size - 2 * period) / step_size)
|
|
assert n_splits >= 2, (
|
|
f"cross validation for forecasting period={period}"
|
|
f" requires input data with at least {2*period + 2*step_size} examples."
|
|
)
|
|
logger.info(f"Using nsplits={n_splits} due to data size limit.")
|
|
state.kf = TimeSeriesSplit(n_splits=n_splits, test_size=period)
|
|
state.kf.step_size = step_size
|
|
|
|
else:
|
|
n_groups = ts_data.X_train.groupby(state.fit_kwargs.get("group_ids")).ngroups
|
|
period = state.fit_kwargs["period"]
|
|
state.kf = TimeSeriesSplit(n_splits=n_splits, test_size=period * n_groups)
|
|
|
|
# TODO: move task detection to Task.__init__!
|
|
def decide_split_type(
|
|
self,
|
|
split_type,
|
|
y_train_all,
|
|
fit_kwargs,
|
|
groups=None,
|
|
) -> str:
|
|
# TODO: move into task creation!!!
|
|
if self.name == "classification":
|
|
self.name = get_classification_objective(len(np.unique(y_train_all)))
|
|
|
|
# TODO: do we need this?
|
|
if not isinstance(split_type, str):
|
|
assert hasattr(split_type, "split") and hasattr(
|
|
split_type, "get_n_splits"
|
|
), "split_type must be a string or a splitter object with split and get_n_splits methods."
|
|
assert (
|
|
not isinstance(split_type, GroupKFold) or groups is not None
|
|
), "GroupKFold requires groups to be provided."
|
|
return split_type
|
|
|
|
else:
|
|
assert split_type in ["auto", "time"]
|
|
assert isinstance(
|
|
fit_kwargs.get("period"),
|
|
int, # NOTE: _decide_split_type is before kwargs is updated to fit_kwargs_by_estimator
|
|
), f"missing a required integer 'period' for '{TS_FORECAST}' task."
|
|
if fit_kwargs.get("group_ids"):
|
|
# TODO (MARK) This will likely not play well with the task class
|
|
self.name = TS_FORECASTPANEL
|
|
assert isinstance(
|
|
fit_kwargs.get("group_ids"), list
|
|
), f"missing a required List[str] 'group_ids' for '{TS_FORECASTPANEL}' task."
|
|
return "time"
|
|
|
|
# TODO: merge with preprocess() below
|
|
def _preprocess(self, X, transformer=None):
|
|
if isinstance(X, List):
|
|
try:
|
|
if isinstance(X[0], List):
|
|
X = [x for x in zip(*X)]
|
|
X = pd.DataFrame(
|
|
dict(
|
|
[
|
|
(transformer._str_columns[idx], X[idx])
|
|
if isinstance(X[0], List)
|
|
else (transformer._str_columns[idx], [X[idx]])
|
|
for idx in range(len(X))
|
|
]
|
|
)
|
|
)
|
|
except IndexError:
|
|
raise IndexError("Test data contains more columns than training data, exiting")
|
|
elif isinstance(X, int):
|
|
return X
|
|
elif issparse(X):
|
|
X = X.tocsr()
|
|
if self.is_ts_forecast():
|
|
X = pd.DataFrame(X)
|
|
if transformer:
|
|
X = transformer.transform(X)
|
|
return X
|
|
|
|
def preprocess(self, X, transformer=None):
|
|
if isinstance(X, pd.DataFrame) or isinstance(X, np.ndarray) or isinstance(X, pd.Series):
|
|
X = X.copy()
|
|
X = normalize_ts_data(X, self.target_names, self.time_col)
|
|
return self._preprocess(X, transformer)
|
|
elif isinstance(X, int):
|
|
return X
|
|
else:
|
|
raise ValueError(f"unknown type of X, {X.__class__}")
|
|
|
|
def evaluate_model_CV(
|
|
self,
|
|
config,
|
|
estimator,
|
|
X_train_all,
|
|
y_train_all,
|
|
budget,
|
|
kf,
|
|
eval_metric,
|
|
best_val_loss,
|
|
cv_score_agg_func=None,
|
|
log_training_metric=False,
|
|
fit_kwargs={},
|
|
free_mem_ratio=0, # what is this for?
|
|
):
|
|
if cv_score_agg_func is None:
|
|
cv_score_agg_func = default_cv_score_agg_func
|
|
start_time = time.time()
|
|
val_loss_folds = []
|
|
log_metric_folds = []
|
|
metric = None
|
|
train_time = pred_time = 0
|
|
total_fold_num = 0
|
|
n = kf.get_n_splits()
|
|
if self.is_classification():
|
|
labels = np.unique(y_train_all)
|
|
else:
|
|
labels = fit_kwargs.get("label_list") # pass the label list on to compute the evaluation metric
|
|
ts_data = X_train_all
|
|
budget_per_train = budget / n
|
|
ts_data = X_train_all
|
|
for data in ts_data.cv_train_val_sets(kf.n_splits, kf.test_size, kf.step_size):
|
|
estimator.cleanup()
|
|
val_loss_i, metric_i, train_time_i, pred_time_i = get_val_loss(
|
|
config,
|
|
estimator,
|
|
X_train=data,
|
|
y_train=None,
|
|
X_val=data,
|
|
y_val=None,
|
|
eval_metric=eval_metric,
|
|
labels=labels,
|
|
budget=budget_per_train,
|
|
log_training_metric=log_training_metric,
|
|
fit_kwargs=fit_kwargs,
|
|
task=self,
|
|
weight_val=None,
|
|
groups_val=None,
|
|
free_mem_ratio=free_mem_ratio,
|
|
)
|
|
if isinstance(metric_i, dict) and "intermediate_results" in metric_i:
|
|
del metric_i["intermediate_results"]
|
|
total_fold_num += 1
|
|
val_loss_folds.append(val_loss_i)
|
|
log_metric_folds.append(metric_i)
|
|
train_time += train_time_i
|
|
pred_time += pred_time_i
|
|
if time.time() - start_time >= budget:
|
|
break
|
|
val_loss, metric = cv_score_agg_func(val_loss_folds, log_metric_folds)
|
|
n = total_fold_num
|
|
pred_time /= n
|
|
return val_loss, metric, train_time, pred_time
|
|
|
|
def default_estimator_list(self, estimator_list: List[str], is_spark_dataframe: bool) -> List[str]:
|
|
assert not is_spark_dataframe, "Spark is not yet supported for time series"
|
|
|
|
# TODO: why not do this if/then in the calling function?
|
|
if "auto" != estimator_list:
|
|
return estimator_list
|
|
|
|
if self.is_ts_forecastpanel():
|
|
return ["tft"]
|
|
|
|
estimator_list = [
|
|
"lgbm",
|
|
"rf",
|
|
"xgboost",
|
|
"extra_tree",
|
|
"xgb_limitdepth",
|
|
]
|
|
|
|
# Catboost appears to be way slower than the others, don't include it by default
|
|
# try:
|
|
# import catboost
|
|
#
|
|
# estimator_list.append("catboost")
|
|
# except ImportError:
|
|
# pass
|
|
|
|
if self.is_regression():
|
|
estimator_list += ["arima", "sarimax"]
|
|
|
|
try:
|
|
import prophet
|
|
|
|
estimator_list.append("prophet")
|
|
except ImportError:
|
|
pass
|
|
|
|
return estimator_list
|
|
|
|
def default_metric(self, metric: str) -> str:
|
|
assert self.is_ts_forecast(), "If this is not a TS forecasting task, this code should never have been called"
|
|
if metric == "auto":
|
|
return "mape"
|
|
else:
|
|
return metric
|
|
|
|
@staticmethod
|
|
def prepare_sample_train_data(automlstate, sample_size):
|
|
# we take the tail, rather than the head, for compatibility with time series
|
|
|
|
shift = sample_size - len(automlstate.X_train.train_data)
|
|
sampled_X_train = automlstate.X_train.move_validation_boundary(shift)
|
|
|
|
return sampled_X_train, None, None, None
|
|
|
|
|
|
def remove_ts_duplicates(
|
|
X,
|
|
time_col,
|
|
):
|
|
"""
|
|
Assumes the targets are included
|
|
@param X:
|
|
@param time_col:
|
|
@param y:
|
|
@return:
|
|
"""
|
|
|
|
duplicates = X.duplicated()
|
|
|
|
if any(duplicates):
|
|
logger.warning("Duplicate timestamp values found in timestamp column. " f"\n{X.loc[duplicates, X][time_col]}")
|
|
X = X.drop_duplicates()
|
|
logger.warning("Removed duplicate rows based on all columns")
|
|
assert (
|
|
X[[X.columns[0]]].duplicated() is None
|
|
), "Duplicate timestamp values with different values for other columns."
|
|
|
|
return X
|