autogen/autogen/retrieve_utils.py
Shobhit Vishnoi ebd5de9501
Add additional docs in retrieval agent if required (#1028)
* Update conversable_agent.py

* Add files via upload

* Delete notebook/Async_human_input.ipynb

* Add files via upload

* refactor:formatter

* feat:updated position

* Update dbutils.py

* added feature to add docs in retrieve

* Update dbutils.py

* Update retrieve_user_proxy_agent.py

* Update retrieve_utils.py

* Update qdrant_retrieve_user_proxy_agent.py

* Update qdrant_retrieve_user_proxy_agent.py

* feat:fixed pre commit issue

---------

Co-authored-by: Chi Wang <wang.chi@microsoft.com>
Co-authored-by: svrapidinnovation <sv@rapidinnovation.dev>
Co-authored-by: Li Jiang <bnujli@gmail.com>
Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu>
2023-12-25 21:25:03 +00:00

380 lines
15 KiB
Python

from typing import List, Union, Callable
import os
import requests
from urllib.parse import urlparse
import glob
import chromadb
if chromadb.__version__ < "0.4.15":
from chromadb.api import API
else:
from chromadb.api import ClientAPI as API
from chromadb.api.types import QueryResult
import chromadb.utils.embedding_functions as ef
import logging
import pypdf
from autogen.token_count_utils import count_token
try:
from unstructured.partition.auto import partition
HAS_UNSTRUCTURED = True
except ImportError:
HAS_UNSTRUCTURED = False
logger = logging.getLogger(__name__)
TEXT_FORMATS = [
"txt",
"json",
"csv",
"tsv",
"md",
"html",
"htm",
"rtf",
"rst",
"jsonl",
"log",
"xml",
"yaml",
"yml",
"pdf",
]
UNSTRUCTURED_FORMATS = [
"doc",
"docx",
"epub",
"msg",
"odt",
"org",
"pdf",
"ppt",
"pptx",
"rtf",
"rst",
"xlsx",
] # These formats will be parsed by the 'unstructured' library, if installed.
if HAS_UNSTRUCTURED:
TEXT_FORMATS += UNSTRUCTURED_FORMATS
TEXT_FORMATS = list(set(TEXT_FORMATS))
VALID_CHUNK_MODES = frozenset({"one_line", "multi_lines"})
def split_text_to_chunks(
text: str,
max_tokens: int = 4000,
chunk_mode: str = "multi_lines",
must_break_at_empty_line: bool = True,
overlap: int = 10,
):
"""Split a long text into chunks of max_tokens."""
if chunk_mode not in VALID_CHUNK_MODES:
raise AssertionError
if chunk_mode == "one_line":
must_break_at_empty_line = False
chunks = []
lines = text.split("\n")
lines_tokens = [count_token(line) for line in lines]
sum_tokens = sum(lines_tokens)
while sum_tokens > max_tokens:
if chunk_mode == "one_line":
estimated_line_cut = 2
else:
estimated_line_cut = int(max_tokens / sum_tokens * len(lines)) + 1
cnt = 0
prev = ""
for cnt in reversed(range(estimated_line_cut)):
if must_break_at_empty_line and lines[cnt].strip() != "":
continue
if sum(lines_tokens[:cnt]) <= max_tokens:
prev = "\n".join(lines[:cnt])
break
if cnt == 0:
logger.warning(
f"max_tokens is too small to fit a single line of text. Breaking this line:\n\t{lines[0][:100]} ..."
)
if not must_break_at_empty_line:
split_len = int(max_tokens / lines_tokens[0] * 0.9 * len(lines[0]))
prev = lines[0][:split_len]
lines[0] = lines[0][split_len:]
lines_tokens[0] = count_token(lines[0])
else:
logger.warning("Failed to split docs with must_break_at_empty_line being True, set to False.")
must_break_at_empty_line = False
chunks.append(prev) if len(prev) > 10 else None # don't add chunks less than 10 characters
lines = lines[cnt:]
lines_tokens = lines_tokens[cnt:]
sum_tokens = sum(lines_tokens)
text_to_chunk = "\n".join(lines)
chunks.append(text_to_chunk) if len(text_to_chunk) > 10 else None # don't add chunks less than 10 characters
return chunks
def extract_text_from_pdf(file: str) -> str:
"""Extract text from PDF files"""
text = ""
with open(file, "rb") as f:
reader = pypdf.PdfReader(f)
if reader.is_encrypted: # Check if the PDF is encrypted
try:
reader.decrypt("")
except pypdf.errors.FileNotDecryptedError as e:
logger.warning(f"Could not decrypt PDF {file}, {e}")
return text # Return empty text if PDF could not be decrypted
for page_num in range(len(reader.pages)):
page = reader.pages[page_num]
text += page.extract_text()
if not text.strip(): # Debugging line to check if text is empty
logger.warning(f"Could not decrypt PDF {file}")
return text
def split_files_to_chunks(
files: list,
max_tokens: int = 4000,
chunk_mode: str = "multi_lines",
must_break_at_empty_line: bool = True,
custom_text_split_function: Callable = None,
):
"""Split a list of files into chunks of max_tokens."""
chunks = []
for file in files:
_, file_extension = os.path.splitext(file)
file_extension = file_extension.lower()
if HAS_UNSTRUCTURED and file_extension[1:] in UNSTRUCTURED_FORMATS:
text = partition(file)
text = "\n".join([t.text for t in text]) if len(text) > 0 else ""
elif file_extension == ".pdf":
text = extract_text_from_pdf(file)
else: # For non-PDF text-based files
with open(file, "r", encoding="utf-8", errors="ignore") as f:
text = f.read()
if not text.strip(): # Debugging line to check if text is empty after reading
logger.warning(f"No text available in file: {file}")
continue # Skip to the next file if no text is available
if custom_text_split_function is not None:
chunks += custom_text_split_function(text)
else:
chunks += split_text_to_chunks(text, max_tokens, chunk_mode, must_break_at_empty_line)
return chunks
def get_files_from_dir(dir_path: Union[str, List[str]], types: list = TEXT_FORMATS, recursive: bool = True):
"""Return a list of all the files in a given directory, a url, a file path or a list of them."""
if len(types) == 0:
raise ValueError("types cannot be empty.")
types = [t[1:].lower() if t.startswith(".") else t.lower() for t in set(types)]
types += [t.upper() for t in types]
files = []
# If the path is a list of files or urls, process and return them
if isinstance(dir_path, list):
for item in dir_path:
if os.path.isfile(item):
files.append(item)
elif is_url(item):
files.append(get_file_from_url(item))
elif os.path.exists(item):
try:
files.extend(get_files_from_dir(item, types, recursive))
except ValueError:
logger.warning(f"Directory {item} does not exist. Skipping.")
else:
logger.warning(f"File {item} does not exist. Skipping.")
return files
# If the path is a file, return it
if os.path.isfile(dir_path):
return [dir_path]
# If the path is a url, download it and return the downloaded file
if is_url(dir_path):
return [get_file_from_url(dir_path)]
if os.path.exists(dir_path):
for type in types:
if recursive:
files += glob.glob(os.path.join(dir_path, f"**/*.{type}"), recursive=True)
else:
files += glob.glob(os.path.join(dir_path, f"*.{type}"), recursive=False)
else:
logger.error(f"Directory {dir_path} does not exist.")
raise ValueError(f"Directory {dir_path} does not exist.")
return files
def get_file_from_url(url: str, save_path: str = None):
"""Download a file from a URL."""
if save_path is None:
os.makedirs("/tmp/chromadb", exist_ok=True)
save_path = os.path.join("/tmp/chromadb", os.path.basename(url))
else:
os.makedirs(os.path.dirname(save_path), exist_ok=True)
with requests.get(url, stream=True) as r:
r.raise_for_status()
with open(save_path, "wb") as f:
for chunk in r.iter_content(chunk_size=8192):
f.write(chunk)
return save_path
def is_url(string: str):
"""Return True if the string is a valid URL."""
try:
result = urlparse(string)
return all([result.scheme, result.netloc])
except ValueError:
return False
def create_vector_db_from_dir(
dir_path: Union[str, List[str]],
max_tokens: int = 4000,
client: API = None,
db_path: str = "/tmp/chromadb.db",
collection_name: str = "all-my-documents",
get_or_create: bool = False,
chunk_mode: str = "multi_lines",
must_break_at_empty_line: bool = True,
embedding_model: str = "all-MiniLM-L6-v2",
embedding_function: Callable = None,
custom_text_split_function: Callable = None,
custom_text_types: List[str] = TEXT_FORMATS,
recursive: bool = True,
extra_docs: bool = False,
) -> API:
"""Create a vector db from all the files in a given directory, the directory can also be a single file or a url to
a single file. We support chromadb compatible APIs to create the vector db, this function is not required if
you prepared your own vector db.
Args:
dir_path (Union[str, List[str]]): the path to the directory, file, url or a list of them.
max_tokens (Optional, int): the maximum number of tokens per chunk. Default is 4000.
client (Optional, API): the chromadb client. Default is None.
db_path (Optional, str): the path to the chromadb. Default is "/tmp/chromadb.db".
collection_name (Optional, str): the name of the collection. Default is "all-my-documents".
get_or_create (Optional, bool): Whether to get or create the collection. Default is False. If True, the collection
will be returned if it already exists. Will raise ValueError if the collection already exists and get_or_create is False.
chunk_mode (Optional, str): the chunk mode. Default is "multi_lines".
must_break_at_empty_line (Optional, bool): Whether to break at empty line. Default is True.
embedding_model (Optional, str): the embedding model to use. Default is "all-MiniLM-L6-v2". Will be ignored if
embedding_function is not None.
embedding_function (Optional, Callable): the embedding function to use. Default is None, SentenceTransformer with
the given `embedding_model` will be used. If you want to use OpenAI, Cohere, HuggingFace or other embedding
functions, you can pass it here, follow the examples in `https://docs.trychroma.com/embeddings`.
custom_text_split_function (Optional, Callable): a custom function to split a string into a list of strings.
Default is None, will use the default function in `autogen.retrieve_utils.split_text_to_chunks`.
custom_text_types (Optional, List[str]): a list of file types to be processed. Default is TEXT_FORMATS.
recursive (Optional, bool): whether to search documents recursively in the dir_path. Default is True.
extra_docs (Optional, bool): whether to add more documents in the collection. Default is False
Returns:
API: the chromadb client.
"""
if client is None:
client = chromadb.PersistentClient(path=db_path)
try:
embedding_function = (
ef.SentenceTransformerEmbeddingFunction(embedding_model)
if embedding_function is None
else embedding_function
)
collection = client.create_collection(
collection_name,
get_or_create=get_or_create,
embedding_function=embedding_function,
# https://github.com/nmslib/hnswlib#supported-distances
# https://github.com/chroma-core/chroma/blob/566bc80f6c8ee29f7d99b6322654f32183c368c4/chromadb/segment/impl/vector/local_hnsw.py#L184
# https://github.com/nmslib/hnswlib/blob/master/ALGO_PARAMS.md
metadata={"hnsw:space": "ip", "hnsw:construction_ef": 30, "hnsw:M": 32}, # ip, l2, cosine
)
length = 0
if extra_docs:
length = len(collection.get()["ids"])
if custom_text_split_function is not None:
chunks = split_files_to_chunks(
get_files_from_dir(dir_path, custom_text_types, recursive),
custom_text_split_function=custom_text_split_function,
)
else:
chunks = split_files_to_chunks(
get_files_from_dir(dir_path, custom_text_types, recursive),
max_tokens,
chunk_mode,
must_break_at_empty_line,
)
logger.info(f"Found {len(chunks)} chunks.")
# Upsert in batch of 40000 or less if the total number of chunks is less than 40000
for i in range(0, len(chunks), min(40000, len(chunks))):
end_idx = i + min(40000, len(chunks) - i)
collection.upsert(
documents=chunks[i:end_idx],
ids=[f"doc_{j+length}" for j in range(i, end_idx)], # unique for each doc
)
except ValueError as e:
logger.warning(f"{e}")
return client
def query_vector_db(
query_texts: List[str],
n_results: int = 10,
client: API = None,
db_path: str = "/tmp/chromadb.db",
collection_name: str = "all-my-documents",
search_string: str = "",
embedding_model: str = "all-MiniLM-L6-v2",
embedding_function: Callable = None,
) -> QueryResult:
"""Query a vector db. We support chromadb compatible APIs, it's not required if you prepared your own vector db
and query function.
Args:
query_texts (List[str]): the list of strings which will be used to query the vector db.
n_results (Optional, int): the number of results to return. Default is 10.
client (Optional, API): the chromadb compatible client. Default is None, a chromadb client will be used.
db_path (Optional, str): the path to the vector db. Default is "/tmp/chromadb.db".
collection_name (Optional, str): the name of the collection. Default is "all-my-documents".
search_string (Optional, str): the search string. Only docs that contain an exact match of this string will be retrieved. Default is "".
embedding_model (Optional, str): the embedding model to use. Default is "all-MiniLM-L6-v2". Will be ignored if
embedding_function is not None.
embedding_function (Optional, Callable): the embedding function to use. Default is None, SentenceTransformer with
the given `embedding_model` will be used. If you want to use OpenAI, Cohere, HuggingFace or other embedding
functions, you can pass it here, follow the examples in `https://docs.trychroma.com/embeddings`.
Returns:
QueryResult: the query result. The format is:
class QueryResult(TypedDict):
ids: List[IDs]
embeddings: Optional[List[List[Embedding]]]
documents: Optional[List[List[Document]]]
metadatas: Optional[List[List[Metadata]]]
distances: Optional[List[List[float]]]
"""
if client is None:
client = chromadb.PersistentClient(path=db_path)
# the collection's embedding function is always the default one, but we want to use the one we used to create the
# collection. So we compute the embeddings ourselves and pass it to the query function.
collection = client.get_collection(collection_name)
embedding_function = (
ef.SentenceTransformerEmbeddingFunction(embedding_model) if embedding_function is None else embedding_function
)
query_embeddings = embedding_function(query_texts)
# Query/search n most similar results. You can also .get by id
results = collection.query(
query_embeddings=query_embeddings,
n_results=n_results,
where_document={"$contains": search_string} if search_string else None, # optional filter
)
return results