Chi Wang 3e7aac6e8b
unify auto_reply; bug fix in UserProxyAgent; reorg agent hierarchy (#1142)
* simplify the initiation of chat

* version update

* include openai

* completion

* load config list from json

* initiate_chat

* oai config list

* oai config list

* config list

* config_list

* raise_error

* retry_time

* raise condition

* oai config list

* catch file not found

* catch openml error

* handle openml error

* handle openml error

* handle openml error

* handle openml error

* handle openml error

* handle openml error

* close #1139

* use property

* termination msg

* AIUserProxyAgent

* smaller dev container

* update notebooks

* match

* document code execution and AIUserProxyAgent

* gpt 3.5 config list

* rate limit

* variable visibility

* remove unnecessary import

* quote

* notebook comments

* remove mathchat from init import

* two users

* import location

* expose config

* return str not tuple

* rate limit

* ipython user proxy

* message

* None result

* rate limit

* rate limit

* rate limit

* rate limit

* make auto_reply a common method for all agents

* abs path

* refactor and doc

* set mathchat_termination

* code format

* modified

* emove import

* code quality

* sender -> messages

* system message

* clean agent hierarchy

* dict check

* invalid oai msg

* return

* openml error

* docstr

---------

Co-authored-by: kevin666aa <yrwu000627@gmail.com>
2023-07-25 23:46:11 +00:00
..
2023-02-28 16:27:14 +00:00
2023-04-10 19:50:40 +00:00

AutoML for NLP

This directory contains utility functions used by AutoNLP. Currently we support four NLP tasks: sequence classification, sequence regression, multiple choice and summarization.

Please refer to this link for examples.

Troubleshooting fine-tuning HPO for pre-trained language models

The frequent updates of transformers may lead to fluctuations in the results of tuning. To help users quickly troubleshoot the result of AutoNLP when a tuning failure occurs (e.g., failing to reproduce previous results), we have provided the following jupyter notebook:

Our findings on troubleshooting fine-tuning the Electra and RoBERTa model for the GLUE dataset can be seen in the following paper published in ACL 2021:

@inproceedings{liu2021hpo,
    title={An Empirical Study on Hyperparameter Optimization for Fine-Tuning Pre-trained Language Models},
    author={Xueqing Liu and Chi Wang},
    year={2021},
    booktitle={ACL-IJCNLP},
}