mirror of
https://github.com/microsoft/autogen.git
synced 2025-11-05 20:34:19 +00:00
* Refactor into automl subpackage Moved some of the packages into an automl subpackage to tidy before the task-based refactor. This is in response to discussions with the group and a comment on the first task-based PR. Only changes here are moving subpackages and modules into the new automl, fixing imports to work with this structure and fixing some dependencies in setup.py. * Fix doc building post automl subpackage refactor * Fix broken links in website post automl subpackage refactor * Fix broken links in website post automl subpackage refactor * Remove vw from test deps as this is breaking the build * Move default back to the top-level I'd moved this to automl as that's where it's used internally, but had missed that this is actually part of the public interface so makes sense to live where it was. * Re-add top level modules with deprecation warnings flaml.data, flaml.ml and flaml.model are re-added to the top level, being re-exported from flaml.automl for backwards compatability. Adding a deprecation warning so that we can have a planned removal later. * Fix model.py line-endings * WIP * WIP - Notes below Got to the point where the methods from AutoML are pulled to GenericTask. Started removing private markers and removing the passing of automl to these methods. Done with decide_split_type, started on prepare_data. Need to do the others after * Re-add generic_task * Most of the merge done, test_forecast_automl fit succeeds, fails at predict() * Remaining fixes - test_forecast.py passes * Comment out holidays-related code as it's not currently used * Further holidays cleanup * Fix imports in a test * tidy up validate_data in time series task * Test fixes * Fix tests: add Task.__str__ * Fix tests: test for ray.ObjectRef * Hotwire TS_Sklearn wrapper to fix test fail * Attempt at test fix * Fix test where val_pred_y is a list * Attempt to fix remaining tests * Push to retrigger tests * Push to retrigger tests * Push to retrigger tests * Push to retrigger tests * Remove plots from automl/test_forecast * Remove unused data size field from Task * Fix import for CLASSIFICATION in notebook * Monkey patch TFT to avoid plotting, to fix tests on MacOS * Monkey patch TFT to avoid plotting v2, to fix tests on MacOS * Monkey patch TFT to avoid plotting v2, to fix tests on MacOS * Fix circular import * remove redundant code in task.py post-merge * Fix test: set svd_solver="full" in PCA * Update flaml/automl/data.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * Fix review comments * Fix task -> str in custom learner constructor * Remove unused CLASSIFICATION imports * Hotwire TS_Sklearn wrapper to fix test fail by setting optimizer_for_horizon == False * Revert changes to the automl_classification and pin FLAML version * Fix imports in reverted notebook * Fix FLAML version in automl notebooks * Fix ml.py line endings * Fix CLASSIFICATION task import in automl_classification notebook * Uncomment pip install in notebook and revert import Not convinced this will work because of installing an older version of the package into the environment in which we're running the tests, but let's see. * Revert c6a5dd1a0 * Fix get_classification_objective import in suggest.py * Remove hcrystallball docs reference in TS_Sklearn * Merge markharley:extract-task-class-from-automl into this * Fix import, remove smooth.py * Fix dependencies to fix TFT fail on Windows Python 3.8 and 3.9 * Add tensorboardX dependency to fix TFT fail on Windows Python 3.8 and 3.9 * Set pytorch-lightning==1.9.0 to fix TFT fail on Windows Python 3.8 and 3.9 * Set pytorch-lightning==1.9.0 to fix TFT fail on Windows Python 3.8 and 3.9 * Disable PCA reduction of lagged features for now, to fix svd convervence fail * Merge flaml/main into time_series_task * Attempt to fix formatting * Attempt to fix formatting * tentatively implement holt-winters-no covariates * fix forecast method, clean class * checking external regressors too * update test forecast * remove duplicated test file, re-add sarimax, search space cleanup * Update flaml/automl/model.py removed links. Most important one probably was: https://robjhyndman.com/hyndsight/ets-regressors/ Co-authored-by: Chi Wang <wang.chi@microsoft.com> * prevent short series * add docs * First attempt at merging Holt-Winters * Linter fix * Add holt-winters to TimeSeriesTask.estimators * Fix spark test fail * Attempt to fix another spark test fail * Attempt to fix another spark test fail * Change Black max line length to 127 * Change Black max line length to 120 * Add logging for ARIMA params, clean up time series models inheritance * Add more logging for missing ARIMA params * Remove a meaningless test causing a fail, add stricter check on ARIMA params * Fix a bug in HoltWinters * A pointless change to hopefully trigger the on and off KeyError in ARIMA.fit() * Fix formatting * Attempt to fix formatting * Attempt to fix formatting * Attempt to fix formatting * Attempt to fix formatting * Add type annotations to _train_with_config() in state.py * Add type annotations to prepare_sample_train_data() in state.py * Add docstring for time_col argument of AutoML.fit() * Address @sonichi's comments on PR * Fix formatting * Fix formatting * Reduce test time budget * Reduce test time budget * Increase time budget for the test to pass * Remove redundant imports * Remove more redundant imports * Minor fixes of points raised by Qingyun * Try to fix pandas import fail * Try to fix pandas import fail, again * Try to fix pandas import fail, again * Try to fix pandas import fail, again * Try to fix pandas import fail, again * Try to fix pandas import fail, again * Try to fix pandas import fail, again * Try to fix pandas import fail, again * Try to fix pandas import fail, again * Try to fix pandas import fail, again * Try to fix pandas import fail, again * Formatting fixes * More formatting fixes * Added test that loops over TS models to ensure coverage * Fix formatting issues * Fix more formatting issues * Fix random fail in check * Put back in tests for ARIMA predict without fit * Put back in tests for lgbm * Update test/test_model.py cover dedup * Match target length to X length in missing test --------- Co-authored-by: Mark Harley <mark.harley@transferwise.com> Co-authored-by: Mark Harley <mharley.code@gmail.com> Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu> Co-authored-by: Chi Wang <wang.chi@microsoft.com> Co-authored-by: Andrea W <a.ruggerini@ammagamma.com> Co-authored-by: Andrea Ruggerini <nescio.adv@gmail.com> Co-authored-by: Egor Kraev <Egor.Kraev@tw.com> Co-authored-by: Li Jiang <bnujli@gmail.com>
761 lines
26 KiB
Python
761 lines
26 KiB
Python
import time
|
|
import logging
|
|
import os
|
|
from datetime import datetime
|
|
import math
|
|
from typing import List, Optional, Union
|
|
|
|
try:
|
|
import pandas as pd
|
|
from pandas import DataFrame, Series, to_datetime
|
|
except ImportError:
|
|
|
|
class PD:
|
|
pass
|
|
|
|
pd = PD()
|
|
pd.DataFrame = None
|
|
pd.Series = None
|
|
DataFrame = Series = None
|
|
|
|
|
|
import numpy as np
|
|
|
|
from flaml import tune
|
|
from flaml.model import (
|
|
suppress_stdout_stderr,
|
|
SKLearnEstimator,
|
|
logger,
|
|
LGBMEstimator,
|
|
XGBoostSklearnEstimator,
|
|
RandomForestEstimator,
|
|
ExtraTreesEstimator,
|
|
XGBoostLimitDepthEstimator,
|
|
CatBoostEstimator,
|
|
)
|
|
from flaml.data import TS_TIMESTAMP_COL, TS_VALUE_COL
|
|
from flaml.automl.time_series.ts_data import (
|
|
TimeSeriesDataset,
|
|
enrich_dataset,
|
|
enrich_dataframe,
|
|
normalize_ts_data,
|
|
create_forward_frame,
|
|
)
|
|
from flaml.automl.task import Task
|
|
|
|
|
|
class TimeSeriesEstimator(SKLearnEstimator):
|
|
def __init__(self, task="ts_forecast", n_jobs=1, **params):
|
|
super().__init__(task, **params)
|
|
self.time_col: Optional[str] = None
|
|
self.target_names: Optional[Union[str, List[str]]] = None
|
|
self.frequency: Optional[str] = None
|
|
self.end_date: Optional[datetime] = None
|
|
self.regressors: Optional[List[str]] = None
|
|
|
|
def enrich(
|
|
self,
|
|
X: Union[int, TimeSeriesDataset, DataFrame],
|
|
remove_constants: bool = False,
|
|
):
|
|
X = normalize_ts_data(X, None, self.time_col, None)
|
|
if isinstance(X, int):
|
|
X = create_forward_frame(self.frequency, X, self.end_date, self.time_col)
|
|
|
|
fourier_degree = self.params.get("monthly_fourier_degree", 4)
|
|
|
|
if isinstance(X, TimeSeriesDataset):
|
|
return enrich_dataset(
|
|
X,
|
|
fourier_degree,
|
|
remove_constants=remove_constants,
|
|
fourier_time=self.params.get("fourier_time_features"),
|
|
)
|
|
|
|
return enrich_dataframe(
|
|
X,
|
|
fourier_degree,
|
|
remove_constants=remove_constants,
|
|
fourier_time=self.params.get("fourier_time_features"),
|
|
)
|
|
|
|
@classmethod
|
|
def search_space(cls, data: TimeSeriesDataset, task: Task, pred_horizon: int):
|
|
space = cls._search_space(data=data, task=task, pred_horizon=pred_horizon)
|
|
space.update(cls.top_search_space())
|
|
return space
|
|
|
|
@staticmethod
|
|
def adjust_scale(scale: int, data_len: int, pred_horizon: int):
|
|
points = data_len - pred_horizon
|
|
max_lags = math.floor(points / scale)
|
|
|
|
while scale > 2:
|
|
if max_lags >= 2:
|
|
break
|
|
scale = math.ceil(scale / 1.7)
|
|
max_lags = math.floor(points / scale)
|
|
|
|
assert scale >= 2 and max_lags >= 2, f"Too few points ({data_len}) for prediction horizon {pred_horizon}"
|
|
|
|
return scale, max_lags
|
|
|
|
@classmethod
|
|
def top_search_space(cls):
|
|
return {
|
|
"monthly_fourier_degree": {
|
|
"domain": tune.randint(lower=0, upper=8),
|
|
"init_value": 4,
|
|
"low_cost_init_value": 2,
|
|
},
|
|
"fourier_time_features": {
|
|
"domain": tune.randint(lower=0, upper=2), # tune.choice([True, False]),
|
|
"init_value": 1,
|
|
"low_cost_init_value": 0,
|
|
},
|
|
"pca_features": { # disable for now, will deal with occasional svd fail later
|
|
"domain": tune.choice([False]),
|
|
"init_value": False,
|
|
"low_cost_init_value": False,
|
|
},
|
|
}
|
|
|
|
@classmethod
|
|
def top_level_params(cls):
|
|
return ["monthly_fourier_degree"]
|
|
|
|
def _join(self, X_train, y_train):
|
|
assert TS_TIMESTAMP_COL in X_train, (
|
|
"Dataframe for training ts_forecast model must have column"
|
|
f' "{TS_TIMESTAMP_COL}" with the dates in X_train.'
|
|
)
|
|
y_train = DataFrame(y_train, columns=[TS_VALUE_COL])
|
|
train_df = X_train.join(y_train)
|
|
return train_df
|
|
|
|
def fit(self, X_train: TimeSeriesDataset, y_train=None, budget=None, **kwargs):
|
|
# TODO purge y_train
|
|
self.time_col = X_train.time_col
|
|
self.target_names = X_train.target_names
|
|
self.X_train = X_train
|
|
self.frequency = self.X_train.frequency
|
|
self.end_date = self.X_train.end_date
|
|
|
|
def score(self, X_val: DataFrame, y_val: Series, **kwargs):
|
|
from sklearn.metrics import r2_score
|
|
from ..ml import metric_loss_score
|
|
|
|
y_pred = self.predict(X_val, **kwargs)
|
|
if isinstance(X_val, TimeSeriesDataset):
|
|
y_val = X_val.test_data[X_val.target_names[0]]
|
|
self._metric = kwargs.get("metric", None)
|
|
if self._metric:
|
|
return metric_loss_score(self._metric, y_pred, y_val)
|
|
else:
|
|
return r2_score(y_pred, y_val)
|
|
|
|
|
|
class Orbit(TimeSeriesEstimator):
|
|
def fit(self, X_train: TimeSeriesDataset, y_train=None, budget=None, **kwargs):
|
|
# This may be needed to get PyStan to run, needed for Orbit
|
|
os.environ["KMP_DUPLICATE_LIB_OK"] = "True"
|
|
from orbit.models import DLT
|
|
|
|
# y_train is ignored, just need it for signature compatibility with other classes
|
|
super().fit(X_train, y_train, budget=budget, **kwargs)
|
|
current_time = time.time()
|
|
self.logger = logging.getLogger("orbit").setLevel(logging.WARNING)
|
|
|
|
model_class = self.params.get("model_class", DLT)
|
|
self._model = model_class(
|
|
response_col=X_train.target_names[0],
|
|
date_col=X_train.time_col,
|
|
regressor_col=X_train.regressors,
|
|
# TODO: infer seasonality from frequency
|
|
**self.params,
|
|
)
|
|
|
|
with suppress_stdout_stderr():
|
|
self._model.fit(df=X_train.train_data.copy())
|
|
|
|
train_time = time.time() - current_time
|
|
return train_time
|
|
|
|
def predict(self, X: Union[TimeSeriesDataset, DataFrame], **kwargs):
|
|
if isinstance(X, int):
|
|
X = create_forward_frame(
|
|
self.frequency,
|
|
X,
|
|
self.end_date,
|
|
self.time_col,
|
|
)
|
|
|
|
elif isinstance(X, TimeSeriesDataset):
|
|
data = X
|
|
X = data.test_data[[self.time_col] + X.regressors]
|
|
|
|
if self._model is not None:
|
|
forecast = self._model.predict(X, **kwargs)
|
|
out = (
|
|
DataFrame(
|
|
forecast[
|
|
[
|
|
self.time_col,
|
|
"prediction",
|
|
"prediction_5",
|
|
"prediction_95",
|
|
]
|
|
]
|
|
)
|
|
.reset_index(drop=True)
|
|
.rename(
|
|
columns={
|
|
"prediction": self.target_names[0],
|
|
}
|
|
)
|
|
)
|
|
|
|
return out
|
|
else:
|
|
self.logger.warning("Estimator is not fit yet. Please run fit() before predict().")
|
|
return None
|
|
|
|
@classmethod
|
|
def _search_space(cls, **params):
|
|
# TODO: fill in a proper search space
|
|
space = {}
|
|
return space
|
|
|
|
|
|
class Prophet(TimeSeriesEstimator):
|
|
"""The class for tuning Prophet."""
|
|
|
|
@classmethod
|
|
def _search_space(cls, **params):
|
|
space = {
|
|
"changepoint_prior_scale": {
|
|
"domain": tune.loguniform(lower=0.001, upper=0.05),
|
|
"init_value": 0.05,
|
|
"low_cost_init_value": 0.001,
|
|
},
|
|
"seasonality_prior_scale": {
|
|
"domain": tune.loguniform(lower=0.01, upper=10),
|
|
"init_value": 10,
|
|
},
|
|
"holidays_prior_scale": {
|
|
"domain": tune.loguniform(lower=0.01, upper=10),
|
|
"init_value": 10,
|
|
},
|
|
"seasonality_mode": {
|
|
"domain": tune.choice(["additive", "multiplicative"]),
|
|
"init_value": "multiplicative",
|
|
},
|
|
}
|
|
return space
|
|
|
|
def fit(self, X_train, y_train=None, budget=None, **kwargs):
|
|
from prophet import Prophet
|
|
|
|
X_train = self.enrich(X_train)
|
|
super().fit(X_train, y_train, budget=budget, **kwargs)
|
|
|
|
current_time = time.time()
|
|
|
|
if isinstance(X_train, TimeSeriesDataset):
|
|
data = X_train
|
|
target_col = data.target_names[0]
|
|
time_col = data.time_col
|
|
regressors = data.regressors
|
|
# this class only supports univariate regression
|
|
train_df = data.train_data[regressors + [target_col, time_col]]
|
|
train_df = train_df.rename(columns={target_col: "y", time_col: "ds"})
|
|
else:
|
|
train_df = self._join(X_train, y_train)
|
|
|
|
regressors = list(train_df.columns)
|
|
regressors.remove(TS_TIMESTAMP_COL)
|
|
regressors.remove(TS_VALUE_COL)
|
|
|
|
train_df = self._preprocess(train_df)
|
|
logging.getLogger("prophet").setLevel(logging.WARNING)
|
|
nice_params = {k: v for k, v in self.params.items() if k in self._search_space()}
|
|
model = Prophet(**nice_params)
|
|
for regressor in regressors:
|
|
model.add_regressor(regressor)
|
|
with suppress_stdout_stderr():
|
|
model.fit(train_df)
|
|
train_time = time.time() - current_time
|
|
self._model = model
|
|
return train_time
|
|
|
|
def predict(self, X, **kwargs):
|
|
X = self.enrich(X)
|
|
if isinstance(X, int):
|
|
raise ValueError(
|
|
"predict() with steps is only supported for arima/sarimax."
|
|
" For Prophet, pass a dataframe with the first column containing"
|
|
" the timestamp values."
|
|
)
|
|
|
|
if isinstance(X, TimeSeriesDataset):
|
|
data = X
|
|
X = data.test_data[data.regressors + [data.time_col]]
|
|
|
|
X = X.rename(columns={self.time_col: "ds"})
|
|
if self._model is not None:
|
|
X = self._preprocess(X)
|
|
forecast = self._model.predict(X, **kwargs)
|
|
out = forecast["yhat"]
|
|
out.name = self.target_names[0]
|
|
return out
|
|
|
|
else:
|
|
logger.warning("Estimator is not fit yet. Please run fit() before predict().")
|
|
return np.ones(X.shape[0])
|
|
|
|
|
|
class StatsModelsEstimator(TimeSeriesEstimator):
|
|
def predict(self, X, **kwargs) -> pd.Series:
|
|
X = self.enrich(X)
|
|
if self._model is None or self._model is False:
|
|
return np.ones(X if isinstance(X, int) else X.shape[0])
|
|
|
|
if isinstance(X, int):
|
|
return self._model.forecast(steps=X)
|
|
|
|
if isinstance(X, TimeSeriesDataset):
|
|
data = X
|
|
X = data.test_data[data.regressors + [data.time_col]]
|
|
else:
|
|
X = X[self.regressors + [self.time_col]]
|
|
|
|
if isinstance(X, DataFrame):
|
|
start = X[self.time_col].iloc[0]
|
|
end = X[self.time_col].iloc[-1]
|
|
if len(self.regressors):
|
|
exog = self._preprocess(X[self.regressors])
|
|
forecast = self._model.predict(start=start, end=end, exog=exog.values, **kwargs)
|
|
else:
|
|
forecast = self._model.predict(start=start, end=end, **kwargs)
|
|
else:
|
|
raise ValueError(
|
|
"X needs to be either a pandas Dataframe with dates as the first column"
|
|
" or an int number of periods for predict()."
|
|
)
|
|
forecast.name = self.target_names[0]
|
|
return forecast
|
|
|
|
|
|
class ARIMA(StatsModelsEstimator):
|
|
"""The class for tuning ARIMA."""
|
|
|
|
def __init__(self, **kwargs):
|
|
super().__init__(**kwargs)
|
|
if not all([p in self.params for p in ["p", "d", "q"]]):
|
|
print("arima params at init time:")
|
|
print(self.params)
|
|
try:
|
|
raise ValueError("ARIMA initialized without required params p, d, q")
|
|
except Exception as e:
|
|
import traceback
|
|
|
|
print(traceback.format_exc())
|
|
raise e
|
|
|
|
@classmethod
|
|
def _search_space(cls, data: TimeSeriesDataset, task: Task, pred_horizon: int, **params):
|
|
scale, _ = cls.adjust_scale(data.next_scale(), len(data.train_data), pred_horizon)
|
|
space = {
|
|
"p": {
|
|
"domain": tune.qrandint(lower=0, upper=2 * scale, q=1),
|
|
"init_value": scale,
|
|
"low_cost_init_value": 0,
|
|
},
|
|
"d": {
|
|
"domain": tune.qrandint(lower=0, upper=6, q=1),
|
|
"init_value": 1,
|
|
"low_cost_init_value": 0,
|
|
},
|
|
"q": {
|
|
"domain": tune.qrandint(lower=0, upper=2 * scale, q=1),
|
|
"init_value": scale,
|
|
"low_cost_init_value": 0,
|
|
},
|
|
}
|
|
return space
|
|
|
|
def _join(self, X_train, y_train):
|
|
train_df = super()._join(X_train, y_train)
|
|
train_df.index = to_datetime(train_df[TS_TIMESTAMP_COL])
|
|
train_df = train_df.drop(TS_TIMESTAMP_COL, axis=1)
|
|
return train_df
|
|
|
|
def fit(self, X_train, y_train=None, budget=None, **kwargs):
|
|
import warnings
|
|
|
|
super().fit(X_train, y_train, budget=budget, **kwargs)
|
|
X_train = self.enrich(X_train, remove_constants=True)
|
|
|
|
warnings.filterwarnings("ignore")
|
|
from statsmodels.tsa.arima.model import ARIMA as ARIMA_estimator
|
|
|
|
current_time = time.time()
|
|
|
|
if isinstance(X_train, TimeSeriesDataset):
|
|
data = X_train
|
|
# this class only supports univariate regression
|
|
target_col = data.target_names[0] if isinstance(data.target_names, list) else data.target_names
|
|
self.regressors = data.regressors
|
|
train_df = data.train_data[self.regressors + [target_col]]
|
|
train_df.index = to_datetime(data.train_data[data.time_col])
|
|
self.time_col = data.time_col
|
|
self.target_names = target_col
|
|
else:
|
|
target_col = TS_VALUE_COL
|
|
train_df = self._join(X_train, y_train)
|
|
self.regressors = list(train_df)
|
|
self.regressors.remove(TS_VALUE_COL)
|
|
|
|
train_df = self._preprocess(train_df)
|
|
|
|
if len(self.regressors):
|
|
model = ARIMA_estimator(
|
|
train_df[[target_col]],
|
|
exog=train_df[self.regressors],
|
|
order=(self.params["p"], self.params["d"], self.params["q"]),
|
|
enforce_stationarity=False,
|
|
enforce_invertibility=False,
|
|
)
|
|
else:
|
|
model = ARIMA_estimator(
|
|
train_df,
|
|
order=(self.params["p"], self.params["d"], self.params["q"]),
|
|
enforce_stationarity=False,
|
|
enforce_invertibility=False,
|
|
)
|
|
with suppress_stdout_stderr():
|
|
model = model.fit()
|
|
train_time = time.time() - current_time
|
|
self._model = model
|
|
return train_time
|
|
|
|
|
|
class SARIMAX(StatsModelsEstimator):
|
|
"""The class for tuning SARIMA."""
|
|
|
|
@classmethod
|
|
def _search_space(cls, data: TimeSeriesDataset, task: Task, pred_horizon: int, **params):
|
|
scale, max_lags = cls.adjust_scale(data.next_scale(), len(data.train_data), pred_horizon)
|
|
|
|
# TODO: instead, downscale the dataset and take next_scale from that for P and Q
|
|
scales = [
|
|
s for s in [scale, 2 * scale, 3 * scale, 4 * scale] if s * max_lags <= len(data.train_data) - pred_horizon
|
|
]
|
|
|
|
space = {
|
|
"p": {
|
|
"domain": tune.qrandint(lower=0, upper=scale - 1, q=1),
|
|
"init_value": scale - 1,
|
|
"low_cost_init_value": 0,
|
|
},
|
|
"d": {
|
|
"domain": tune.qrandint(lower=0, upper=6, q=1),
|
|
"init_value": 0,
|
|
"low_cost_init_value": 0,
|
|
},
|
|
"q": {
|
|
"domain": tune.qrandint(lower=0, upper=scale - 1, q=1),
|
|
"init_value": scale - 1,
|
|
"low_cost_init_value": 0,
|
|
},
|
|
"P": {
|
|
"domain": tune.qrandint(lower=0, upper=min(10, max_lags), q=1),
|
|
"init_value": 3,
|
|
"low_cost_init_value": 0,
|
|
},
|
|
"D": {
|
|
"domain": tune.qrandint(lower=0, upper=6, q=1),
|
|
"init_value": 0,
|
|
"low_cost_init_value": 0,
|
|
},
|
|
"Q": {
|
|
"domain": tune.qrandint(lower=0, upper=min(10, max_lags), q=1),
|
|
"init_value": 3,
|
|
"low_cost_init_value": 0,
|
|
},
|
|
"s": {
|
|
"domain": tune.choice(scales),
|
|
"init_value": scale,
|
|
},
|
|
}
|
|
return space
|
|
|
|
def fit(self, X_train, y_train=None, budget=None, **kwargs):
|
|
import warnings
|
|
|
|
super().fit(X_train, y_train, budget=budget, **kwargs)
|
|
X_train = self.enrich(X_train)
|
|
|
|
warnings.filterwarnings("ignore")
|
|
from statsmodels.tsa.statespace.sarimax import SARIMAX as SARIMAX_estimator
|
|
|
|
current_time = time.time()
|
|
|
|
if isinstance(X_train, TimeSeriesDataset):
|
|
data = X_train
|
|
target_col = data.target_names[0]
|
|
self.regressors = data.regressors
|
|
# this class only supports univariate regression
|
|
train_df = data.train_data[self.regressors + [target_col]]
|
|
train_df.index = to_datetime(data.train_data[data.time_col])
|
|
else:
|
|
target_col = TS_VALUE_COL
|
|
train_df = self._join(X_train, y_train)
|
|
self.regressors = list(train_df)
|
|
self.regressors.remove(TS_VALUE_COL)
|
|
|
|
train_df = self._preprocess(train_df)
|
|
# regressors = list(train_df)
|
|
# regressors.remove(target_col)
|
|
if self.regressors:
|
|
model = SARIMAX_estimator(
|
|
train_df[[target_col]],
|
|
exog=train_df[self.regressors],
|
|
order=(self.params["p"], self.params["d"], self.params["q"]),
|
|
seasonal_order=(
|
|
self.params["P"],
|
|
self.params["D"],
|
|
self.params["Q"],
|
|
self.params["s"],
|
|
),
|
|
enforce_stationarity=False,
|
|
enforce_invertibility=False,
|
|
)
|
|
else:
|
|
model = SARIMAX_estimator(
|
|
train_df,
|
|
order=(self.params["p"], self.params["d"], self.params["q"]),
|
|
seasonal_order=(
|
|
self.params["P"],
|
|
self.params["D"],
|
|
self.params["Q"],
|
|
self.params["s"],
|
|
),
|
|
enforce_stationarity=False,
|
|
enforce_invertibility=False,
|
|
)
|
|
with suppress_stdout_stderr():
|
|
model = model.fit()
|
|
train_time = time.time() - current_time
|
|
self._model = model
|
|
return train_time
|
|
|
|
|
|
class HoltWinters(StatsModelsEstimator):
|
|
"""
|
|
The class for tuning Holt Winters model, aka 'Triple Exponential Smoothing'.
|
|
"""
|
|
|
|
@classmethod
|
|
def _search_space(cls, data: TimeSeriesDataset, task: Task, pred_horizon: int, **params):
|
|
space = {
|
|
"damped_trend": {"domain": tune.choice([True, False]), "init_value": False},
|
|
"trend": {"domain": tune.choice(["add", "mul", None]), "init_value": "add"},
|
|
"seasonal": {
|
|
"domain": tune.choice(["add", "mul", None]),
|
|
"init_value": "add",
|
|
},
|
|
"use_boxcox": {"domain": tune.choice([False, True]), "init_value": False},
|
|
"seasonal_periods": { # statsmodels casts this to None if "seasonal" is None
|
|
"domain": tune.choice([7, 12, 4, 52, 6]), # weekly, yearly, quarterly, weekly w yearly data
|
|
"init_value": 7,
|
|
},
|
|
}
|
|
return space
|
|
|
|
def fit(self, X_train, y_train, budget=None, free_mem_ratio=0, **kwargs):
|
|
import warnings
|
|
|
|
warnings.filterwarnings("ignore")
|
|
from statsmodels.tsa.holtwinters import (
|
|
ExponentialSmoothing as HWExponentialSmoothing,
|
|
)
|
|
|
|
current_time = time.time()
|
|
super().fit(X_train, y_train, budget=budget, **kwargs)
|
|
X_train = self.enrich(X_train)
|
|
|
|
self.regressors = []
|
|
if isinstance(X_train, TimeSeriesDataset):
|
|
data = X_train
|
|
target_col = data.target_names[0]
|
|
regressors = data.regressors
|
|
# this class only supports univariate regression
|
|
train_df = data.train_data[self.regressors + [target_col]]
|
|
train_df.index = to_datetime(data.train_data[data.time_col])
|
|
else:
|
|
target_col = TS_VALUE_COL
|
|
train_df = self._join(X_train, y_train)
|
|
regressors = list(train_df)
|
|
regressors.remove(TS_VALUE_COL)
|
|
|
|
if regressors:
|
|
logger.warning("Regressors are ignored for Holt-Winters ETS models.")
|
|
|
|
train_df = self._preprocess(train_df)
|
|
|
|
# Override incompatible parameters
|
|
if (
|
|
train_df.shape[0] < 2 * self.params["seasonal_periods"]
|
|
): # this would prevent heuristic initialization to work properly
|
|
self.params["seasonal"] = None
|
|
if (
|
|
self.params["seasonal"] == "mul" and (train_df.y == 0).sum() > 0
|
|
): # cannot have multiplicative seasonality in this case
|
|
self.params["seasonal"] = "add"
|
|
if self.params["trend"] == "mul" and (train_df.y == 0).sum() > 0:
|
|
self.params["trend"] = "add"
|
|
|
|
if not self.params["seasonal"] or self.params["trend"] not in ["mul", "add"]:
|
|
self.params["damped_trend"] = False
|
|
|
|
model = HWExponentialSmoothing(
|
|
train_df[[target_col]],
|
|
damped_trend=self.params["damped_trend"],
|
|
seasonal=self.params["seasonal"],
|
|
trend=self.params["trend"],
|
|
)
|
|
with suppress_stdout_stderr():
|
|
model = model.fit()
|
|
train_time = time.time() - current_time
|
|
self._model = model
|
|
return train_time
|
|
|
|
|
|
class TS_SKLearn(TimeSeriesEstimator):
|
|
"""The class for tuning SKLearn Regressors for time-series forecasting"""
|
|
|
|
base_class = SKLearnEstimator
|
|
|
|
@classmethod
|
|
def _search_space(cls, data: TimeSeriesDataset, task: Task, pred_horizon: int, **params):
|
|
data_size = data.train_data.shape
|
|
space = cls.base_class.search_space(data_size=data_size, task=task, **params)
|
|
|
|
scale, _ = cls.adjust_scale(data.next_scale(), len(data.train_data), pred_horizon)
|
|
|
|
max_lags = max(3 * scale, int(np.sqrt(data_size[0])))
|
|
max_lags = min(max_lags, data_size[0] - pred_horizon - 1)
|
|
|
|
space.update(
|
|
{
|
|
"lags": {
|
|
"domain": tune.randint(lower=1, upper=max_lags),
|
|
"init_value": min(max_lags, scale),
|
|
},
|
|
}
|
|
)
|
|
return space
|
|
|
|
def __init__(self, task="ts_forecast", **params):
|
|
# TODO: pass task objects throughout
|
|
super().__init__(task, **params)
|
|
self._model = None
|
|
self.ts_task = task
|
|
|
|
def fit(self, X_train, y_train=None, budget=None, **kwargs):
|
|
super().fit(X_train, y_train, budget=budget, **kwargs)
|
|
X_train = self.enrich(X_train)
|
|
|
|
current_time = time.time()
|
|
if isinstance(X_train, TimeSeriesDataset):
|
|
data = X_train
|
|
X_train = data.train_data[data.regressors + [data.time_col]]
|
|
self.regressors = data.regressors
|
|
# this class only supports univariate regression
|
|
y_train = data.y_train
|
|
self.time_col = data.time_col
|
|
self.target_names = data.target_names
|
|
elif isinstance(X_train, DataFrame):
|
|
self.time_col = X_train.columns.tolist()[0]
|
|
|
|
# X_train = self.transform_X(X_train)
|
|
self.regressors = X_train.columns.tolist()[1:]
|
|
else:
|
|
raise ValueError("Unknown X type")
|
|
|
|
X_train = self._preprocess(X_train)
|
|
|
|
est_params = {k: v for k, v in self.params.items() if k not in self.top_search_space().keys()}
|
|
|
|
from flaml.automl.time_series.sklearn import SklearnWrapper
|
|
|
|
horizon = kwargs.pop("period")
|
|
lags = est_params.pop("lags")
|
|
est_params["task"] = self._task
|
|
self._model = SklearnWrapper(
|
|
self.base_class,
|
|
horizon=horizon,
|
|
lags=lags,
|
|
init_params=est_params,
|
|
pca_features=self.params.get("pca_features", False),
|
|
)
|
|
self._model.fit(X_train[self.regressors], y_train)
|
|
|
|
train_time = time.time() - current_time
|
|
return train_time
|
|
|
|
def predict(self, X, **kwargs):
|
|
X = self.enrich(X)
|
|
if isinstance(X, TimeSeriesDataset):
|
|
data = X
|
|
X = data.test_data
|
|
|
|
if self._model is not None:
|
|
X = X[self.regressors]
|
|
# X = self.transform_X(X)
|
|
X = self._preprocess(X)
|
|
forecast = self._model.predict(X)
|
|
if isinstance(forecast, Series):
|
|
forecast.name = self.target_names[0]
|
|
|
|
return forecast
|
|
else:
|
|
logger.warning("Estimator is not fit yet. Please run fit() before predict().")
|
|
return np.ones(X.shape[0])
|
|
|
|
|
|
class LGBM_TS(TS_SKLearn):
|
|
"""The class for tuning LGBM Regressor for time-series forecasting"""
|
|
|
|
base_class = LGBMEstimator
|
|
|
|
|
|
class XGBoost_TS(TS_SKLearn):
|
|
"""The class for tuning XGBoost Regressor for time-series forecasting"""
|
|
|
|
base_class = XGBoostSklearnEstimator
|
|
|
|
|
|
class RF_TS(TS_SKLearn):
|
|
"""The class for tuning Random Forest Regressor for time-series forecasting"""
|
|
|
|
base_class = RandomForestEstimator
|
|
|
|
|
|
class ExtraTrees_TS(TS_SKLearn):
|
|
"""The class for tuning Extra Trees Regressor for time-series forecasting"""
|
|
|
|
base_class = ExtraTreesEstimator
|
|
|
|
|
|
class XGBoostLimitDepth_TS(TS_SKLearn):
|
|
"""The class for tuning XGBoost Regressor with unlimited depth for time-series forecasting"""
|
|
|
|
base_class = XGBoostLimitDepthEstimator
|
|
|
|
|
|
# catboost regressor is invalid because it has a `name` parameter, making it incompatible with hcrystalball
|
|
class CatBoost_TS(TS_SKLearn):
|
|
base_class = CatBoostEstimator
|