mirror of
https://github.com/microsoft/autogen.git
synced 2025-09-18 04:34:10 +00:00

* simplify the initiation of chat * version update * include openai * completion * load config list from json * initiate_chat * oai config list * oai config list * config list * config_list * raise_error * retry_time * raise condition * oai config list * catch file not found * catch openml error * handle openml error * handle openml error * handle openml error * handle openml error * handle openml error * handle openml error * close #1139 * use property * termination msg * AIUserProxyAgent * smaller dev container * update notebooks * match * document code execution and AIUserProxyAgent * gpt 3.5 config list * rate limit * variable visibility * remove unnecessary import * quote * notebook comments * remove mathchat from init import * two users * import location * expose config * return str not tuple * rate limit * ipython user proxy * message * None result * rate limit * rate limit * rate limit * rate limit * make auto_reply a common method for all agents * abs path * refactor and doc * set mathchat_termination * code format * modified * emove import * code quality * sender -> messages * system message * clean agent hierarchy * dict check * invalid oai msg * return * openml error * docstr --------- Co-authored-by: kevin666aa <yrwu000627@gmail.com>
108 lines
3.7 KiB
Python
108 lines
3.7 KiB
Python
import sys
|
|
from openml.exceptions import OpenMLServerException
|
|
from requests.exceptions import ChunkedEncodingError, SSLError
|
|
from minio.error import ServerError
|
|
from flaml.tune.spark.utils import check_spark
|
|
import os
|
|
import pytest
|
|
|
|
spark_available, _ = check_spark()
|
|
skip_spark = not spark_available
|
|
|
|
pytestmark = pytest.mark.skipif(skip_spark, reason="Spark is not installed. Skip all spark tests.")
|
|
|
|
os.environ["FLAML_MAX_CONCURRENT"] = "2"
|
|
|
|
|
|
def run_automl(budget=3, dataset_format="dataframe", hpo_method=None):
|
|
from flaml.automl.data import load_openml_dataset
|
|
import urllib3
|
|
|
|
performance_check_budget = 3600
|
|
if sys.platform == "darwin" or "nt" in os.name or "3.10" not in sys.version:
|
|
budget = 3 # revise the buget if the platform is not linux + python 3.10
|
|
if budget >= performance_check_budget:
|
|
max_iter = 60
|
|
performance_check_budget = None
|
|
else:
|
|
max_iter = None
|
|
try:
|
|
X_train, X_test, y_train, y_test = load_openml_dataset(
|
|
dataset_id=1169, data_dir="test/", dataset_format=dataset_format
|
|
)
|
|
except (
|
|
OpenMLServerException,
|
|
ChunkedEncodingError,
|
|
urllib3.exceptions.ReadTimeoutError,
|
|
SSLError,
|
|
ServerError,
|
|
Exception,
|
|
) as e:
|
|
print(e)
|
|
return
|
|
|
|
""" import AutoML class from flaml package """
|
|
from flaml import AutoML
|
|
|
|
automl = AutoML()
|
|
settings = {
|
|
"time_budget": budget, # total running time in seconds
|
|
"max_iter": max_iter, # maximum number of iterations
|
|
"metric": "accuracy", # primary metrics can be chosen from: ['accuracy','roc_auc','roc_auc_ovr','roc_auc_ovo','f1','log_loss','mae','mse','r2']
|
|
"task": "classification", # task type
|
|
"log_file_name": "airlines_experiment.log", # flaml log file
|
|
"seed": 7654321, # random seed
|
|
"hpo_method": hpo_method,
|
|
"log_type": "all",
|
|
"estimator_list": [
|
|
"lgbm",
|
|
"xgboost",
|
|
"xgb_limitdepth",
|
|
"rf",
|
|
"extra_tree",
|
|
], # list of ML learners
|
|
"eval_method": "holdout",
|
|
"n_concurrent_trials": 2,
|
|
"use_spark": True,
|
|
}
|
|
|
|
"""The main flaml automl API"""
|
|
automl.fit(X_train=X_train, y_train=y_train, **settings)
|
|
|
|
""" retrieve best config and best learner """
|
|
print("Best ML leaner:", automl.best_estimator)
|
|
print("Best hyperparmeter config:", automl.best_config)
|
|
print("Best accuracy on validation data: {0:.4g}".format(1 - automl.best_loss))
|
|
print("Training duration of best run: {0:.4g} s".format(automl.best_config_train_time))
|
|
print(automl.model.estimator)
|
|
print(automl.best_config_per_estimator)
|
|
print("time taken to find best model:", automl.time_to_find_best_model)
|
|
|
|
""" compute predictions of testing dataset """
|
|
y_pred = automl.predict(X_test)
|
|
print("Predicted labels", y_pred)
|
|
print("True labels", y_test)
|
|
y_pred_proba = automl.predict_proba(X_test)[:, 1]
|
|
""" compute different metric values on testing dataset """
|
|
from flaml.automl.ml import sklearn_metric_loss_score
|
|
|
|
accuracy = 1 - sklearn_metric_loss_score("accuracy", y_pred, y_test)
|
|
print("accuracy", "=", accuracy)
|
|
print("roc_auc", "=", 1 - sklearn_metric_loss_score("roc_auc", y_pred_proba, y_test))
|
|
print("log_loss", "=", sklearn_metric_loss_score("log_loss", y_pred_proba, y_test))
|
|
if performance_check_budget is None:
|
|
assert accuracy >= 0.669, "the accuracy of flaml should be larger than 0.67"
|
|
|
|
|
|
def test_automl_array():
|
|
run_automl(3, "array", "bs")
|
|
|
|
|
|
def test_automl_performance():
|
|
run_automl(3600)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_automl_array()
|
|
test_automl_performance()
|