mirror of
https://github.com/microsoft/autogen.git
synced 2025-07-14 12:31:28 +00:00
155 lines
5.8 KiB
Python
155 lines
5.8 KiB
Python
import argparse
|
|
import asyncio
|
|
import json
|
|
import logging
|
|
import os
|
|
from typing import Annotated, Callable
|
|
|
|
import openai
|
|
from agnext.application import (
|
|
SingleThreadedAgentRuntime,
|
|
)
|
|
from agnext.chat.agents.chat_completion_agent import ChatCompletionAgent
|
|
from agnext.chat.agents.oai_assistant import OpenAIAssistantAgent
|
|
from agnext.chat.patterns.orchestrator_chat import OrchestratorChat
|
|
from agnext.chat.types import TextMessage
|
|
from agnext.components.function_executor._impl.in_process_function_executor import (
|
|
InProcessFunctionExecutor,
|
|
)
|
|
from agnext.components.llm import OpenAI, SystemMessage
|
|
from agnext.core import Agent, AgentRuntime
|
|
from agnext.core.intervention import DefaultInterventionHandler, DropMessage
|
|
from tavily import TavilyClient
|
|
from typing_extensions import Any, override
|
|
|
|
logging.basicConfig(level=logging.WARNING)
|
|
logging.getLogger("agnext").setLevel(logging.DEBUG)
|
|
|
|
|
|
class LoggingHandler(DefaultInterventionHandler): # type: ignore
|
|
send_color = "\033[31m"
|
|
response_color = "\033[34m"
|
|
reset_color = "\033[0m"
|
|
|
|
@override
|
|
async def on_send(self, message: Any, *, sender: Agent | None, recipient: Agent) -> Any | type[DropMessage]: # type: ignore
|
|
if sender is None:
|
|
print(f"{self.send_color}Sending message to {recipient.name}:{self.reset_color} {message}")
|
|
else:
|
|
print(
|
|
f"{self.send_color}Sending message from {sender.name} to {recipient.name}:{self.reset_color} {message}"
|
|
)
|
|
return message
|
|
|
|
@override
|
|
async def on_response(self, message: Any, *, sender: Agent, recipient: Agent | None) -> Any | type[DropMessage]: # type: ignore
|
|
if recipient is None:
|
|
print(f"{self.response_color}Received response from {sender.name}:{self.reset_color} {message}")
|
|
else:
|
|
print(
|
|
f"{self.response_color}Received response from {sender.name} to {recipient.name}:{self.reset_color} {message}"
|
|
)
|
|
return message
|
|
|
|
|
|
def software_development(runtime: AgentRuntime) -> OrchestratorChat: # type: ignore
|
|
developer = ChatCompletionAgent(
|
|
name="Developer",
|
|
description="A developer that writes code.",
|
|
runtime=runtime,
|
|
system_messages=[SystemMessage("You are a Python developer.")],
|
|
model_client=OpenAI(model="gpt-4-turbo"),
|
|
)
|
|
|
|
tester_oai_assistant = openai.beta.assistants.create(
|
|
model="gpt-4-turbo",
|
|
description="A software tester that runs test cases and reports results.",
|
|
instructions="You are a software tester that runs test cases and reports results.",
|
|
)
|
|
tester_oai_thread = openai.beta.threads.create()
|
|
tester = OpenAIAssistantAgent(
|
|
name="Tester",
|
|
description="A software tester that runs test cases and reports results.",
|
|
runtime=runtime,
|
|
client=openai.AsyncClient(),
|
|
assistant_id=tester_oai_assistant.id,
|
|
thread_id=tester_oai_thread.id,
|
|
)
|
|
|
|
def search(query: Annotated[str, "The search query."]) -> Annotated[str, "The search results."]:
|
|
"""Search the web."""
|
|
client = TavilyClient(api_key=os.getenv("TAVILY_API_KEY"))
|
|
result = client.search(query) # type: ignore
|
|
if result:
|
|
return json.dumps(result, indent=2, ensure_ascii=False) # type: ignore
|
|
return "No results found."
|
|
|
|
function_executor = InProcessFunctionExecutor(functions=[search])
|
|
|
|
product_manager = ChatCompletionAgent(
|
|
name="ProductManager",
|
|
description="A product manager that performs research and comes up with specs.",
|
|
runtime=runtime,
|
|
system_messages=[
|
|
SystemMessage("You are a product manager good at translating customer needs into software specifications."),
|
|
SystemMessage("You can use the search tool to find information on the web."),
|
|
],
|
|
model_client=OpenAI(model="gpt-4-turbo"),
|
|
function_executor=function_executor,
|
|
)
|
|
|
|
planner = ChatCompletionAgent(
|
|
name="Planner",
|
|
description="A planner that organizes and schedules tasks.",
|
|
runtime=runtime,
|
|
system_messages=[SystemMessage("You are a planner of complex tasks.")],
|
|
model_client=OpenAI(model="gpt-4-turbo"),
|
|
)
|
|
|
|
orchestrator = ChatCompletionAgent(
|
|
name="Orchestrator",
|
|
description="An orchestrator that coordinates the team.",
|
|
runtime=runtime,
|
|
system_messages=[
|
|
SystemMessage("You are an orchestrator that coordinates the team to complete a complex task.")
|
|
],
|
|
model_client=OpenAI(model="gpt-4-turbo"),
|
|
)
|
|
|
|
return OrchestratorChat(
|
|
"OrchestratorChat",
|
|
"A software development team.",
|
|
runtime,
|
|
orchestrator=orchestrator,
|
|
planner=planner,
|
|
specialists=[developer, product_manager, tester],
|
|
)
|
|
|
|
|
|
async def run(message: str, user: str, scenario: Callable[[AgentRuntime], OrchestratorChat]) -> None: # type: ignore
|
|
runtime = SingleThreadedAgentRuntime(before_send=LoggingHandler())
|
|
chat = scenario(runtime)
|
|
response = runtime.send_message(TextMessage(content=message, source=user), chat)
|
|
while not response.done():
|
|
await runtime.process_next()
|
|
print((await response).content) # type: ignore
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(description="Run a orchestrator demo.")
|
|
choices = {"software_development": software_development}
|
|
parser.add_argument(
|
|
"--scenario",
|
|
choices=list(choices.keys()),
|
|
help="The scenario to demo.",
|
|
default="software_development",
|
|
)
|
|
parser.add_argument(
|
|
"--user",
|
|
default="Customer",
|
|
help="The user to send the message. Default is 'Customer'.",
|
|
)
|
|
parser.add_argument("--message", help="The message to send.", required=True)
|
|
args = parser.parse_args()
|
|
asyncio.run(run(args.message, args.user, choices[args.scenario]))
|