autogen/flaml/nlp/utils.py
Xueqing Liu ee3162e232
Adding the NLP task summarization (#346)
* Add test_autohf_summarization.py

* adding seq2seq

* Update flaml/nlp/huggingface/trainer.py

* rouge metrics

Co-authored-by: XinZofStevens <xzhao4346@gmail.com>
Co-authored-by: JinzhuoWu <wujinzhuo0105@gmail.com>
Co-authored-by: Chi Wang <wang.chi@microsoft.com>
2021-12-20 14:19:32 -08:00

389 lines
12 KiB
Python

import argparse
from dataclasses import dataclass, field
from typing import Dict, Any
from ..data import SUMMARIZATION, SEQREGRESSION, SEQCLASSIFICATION, NLG_TASKS
def load_default_huggingface_metric_for_task(task):
if task == SEQCLASSIFICATION:
return "accuracy", "max"
elif task == SEQREGRESSION:
return "rmse", "max"
elif task == SUMMARIZATION:
return "rouge", "max"
# TODO: elif task == your task, return the default metric name for your task,
# e.g., if task == MULTIPLECHOICE, return "accuracy"
# notice this metric name has to be in ['accuracy', 'bertscore', 'bleu', 'bleurt',
# 'cer', 'chrf', 'code_eval', 'comet', 'competition_math', 'coval', 'cuad',
# 'f1', 'gleu', 'glue', 'google_bleu', 'indic_glue', 'matthews_correlation',
# 'meteor', 'pearsonr', 'precision', 'recall', 'rouge', 'sacrebleu', 'sari',
# 'seqeval', 'spearmanr', 'squad', 'squad_v2', 'super_glue', 'ter', 'wer',
# 'wiki_split', 'xnli']
global tokenized_column_names
def tokenize_text(X, Y=None, task=None, custom_hpo_args=None):
if task in (SEQCLASSIFICATION, SEQREGRESSION):
X_tokenized, _ = tokenize_onedataframe(
X, this_tokenizer=None, task=task, custom_hpo_args=custom_hpo_args
)
return X_tokenized, None
elif task in NLG_TASKS:
return tokenize_seq2seq(X, Y, task=task, custom_hpo_args=custom_hpo_args)
def tokenize_seq2seq(X, Y, task=None, custom_hpo_args=None):
model_inputs, tokenizer = tokenize_onedataframe(
X,
this_tokenizer=None,
task=task,
custom_hpo_args=custom_hpo_args,
)
labels = None
if Y is not None:
labels, _ = tokenize_onedataframe(
Y.to_frame(),
this_tokenizer=tokenizer,
task=task,
custom_hpo_args=custom_hpo_args,
)
labels["label"] = [
[(each_l if each_l != tokenizer.pad_token_id else -100) for each_l in label]
for label in labels["input_ids"]
]
labels = labels.drop(
columns=["attention_mask", "input_ids", "decoder_input_ids"]
)
return model_inputs, labels
def tokenize_onedataframe(
X,
this_tokenizer=None,
task=None,
custom_hpo_args=None,
):
from transformers import AutoTokenizer
import pandas
global tokenized_column_names
if this_tokenizer:
with this_tokenizer.as_target_tokenizer():
d = X.apply(
lambda x: tokenize_row(
x,
this_tokenizer,
prefix=("",) if task is SUMMARIZATION else None,
task=task,
custom_hpo_args=custom_hpo_args,
),
axis=1,
result_type="expand",
)
else:
this_tokenizer = AutoTokenizer.from_pretrained(
custom_hpo_args.model_path, use_fast=True
)
d = X.apply(
lambda x: tokenize_row(
x,
this_tokenizer,
prefix=("summarize: ",) if task is SUMMARIZATION else None,
task=task,
custom_hpo_args=custom_hpo_args,
),
axis=1,
result_type="expand",
)
X_tokenized = pandas.DataFrame(columns=tokenized_column_names)
X_tokenized[tokenized_column_names] = d
return X_tokenized, this_tokenizer
def postprocess_text(preds, labels):
import nltk
nltk.download("punkt")
preds = [pred.strip() for pred in preds]
labels = [label.strip() for label in labels]
# rougeLSum expects newline after each sentence
preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in preds]
labels = ["\n".join(nltk.sent_tokenize(label)) for label in labels]
return preds, labels
def tokenize_row(
this_row, this_tokenizer, prefix=None, task=None, custom_hpo_args=None
):
global tokenized_column_names
assert (
"max_seq_length" in custom_hpo_args.__dict__
), "max_seq_length must be provided for glue"
if prefix:
this_row = tuple(["".join(x) for x in zip(prefix, this_row)])
tokenized_example = this_tokenizer(
*tuple(this_row),
padding="max_length",
max_length=custom_hpo_args.max_seq_length,
truncation=True,
)
if task in NLG_TASKS:
tokenized_example["decoder_input_ids"] = tokenized_example["input_ids"]
tokenized_column_names = sorted(tokenized_example.keys())
return [tokenized_example[x] for x in tokenized_column_names]
def separate_config(config, task):
if task in NLG_TASKS:
from transformers import Seq2SeqTrainingArguments, TrainingArguments
trainargs_class_list = [Seq2SeqTrainingArguments, TrainingArguments]
else:
from transformers import TrainingArguments
trainargs_class_list = [TrainingArguments]
training_args_config = {}
per_model_config = {}
for key, val in config.items():
is_in_training_args = any(key in x.__dict__ for x in trainargs_class_list)
if is_in_training_args:
training_args_config[key] = val
else:
per_model_config[key] = val
return training_args_config, per_model_config
def get_num_labels(task, y_train):
from ..data import SEQCLASSIFICATION, SEQREGRESSION
if task == SEQREGRESSION:
return 1
elif task == SEQCLASSIFICATION:
return len(set(y_train))
else:
return None
def _clean_value(value: Any) -> str:
if isinstance(value, float):
return "{:.5}".format(value)
else:
return str(value).replace("/", "_")
def format_vars(resolved_vars: Dict) -> str:
"""Formats the resolved variable dict into a single string."""
out = []
for path, value in sorted(resolved_vars.items()):
if path[0] in ["run", "env", "resources_per_trial"]:
continue # TrialRunner already has these in the experiment_tag
pieces = []
last_string = True
for k in path[::-1]:
if isinstance(k, int):
pieces.append(str(k))
elif last_string:
last_string = False
pieces.append(k)
pieces.reverse()
out.append(_clean_value("_".join(pieces)) + "=" + _clean_value(value))
return ",".join(out)
counter = 0
def date_str():
from datetime import datetime
return datetime.today().strftime("%Y-%m-%d_%H-%M-%S")
def _generate_dirname(experiment_tag, trial_id):
generated_dirname = f"train_{str(trial_id)}_{experiment_tag}"
generated_dirname = generated_dirname[:130]
generated_dirname += f"_{date_str()}"
return generated_dirname.replace("/", "_")
def get_logdir_name(dirname, local_dir):
import os
local_dir = os.path.expanduser(local_dir)
logdir = os.path.join(local_dir, dirname)
return logdir
def get_trial_fold_name(local_dir, trial_config, trial_id):
global counter
counter = counter + 1
experiment_tag = "{0}_{1}".format(str(counter), format_vars(trial_config))
logdir = get_logdir_name(
_generate_dirname(experiment_tag, trial_id=trial_id), local_dir
)
return logdir
def load_model(checkpoint_path, task, num_labels, per_model_config=None):
from transformers import AutoConfig
from .huggingface.switch_head_auto import (
AutoSeqClassificationHead,
MODEL_CLASSIFICATION_HEAD_MAPPING,
)
from ..data import SEQCLASSIFICATION, SEQREGRESSION
this_model_type = AutoConfig.from_pretrained(checkpoint_path).model_type
this_vocab_size = AutoConfig.from_pretrained(checkpoint_path).vocab_size
def get_this_model(task):
from transformers import AutoModelForSequenceClassification
from transformers import AutoModelForSeq2SeqLM
if task in (SEQCLASSIFICATION, SEQREGRESSION):
return AutoModelForSequenceClassification.from_pretrained(
checkpoint_path, config=model_config
)
elif task in NLG_TASKS:
return AutoModelForSeq2SeqLM.from_pretrained(
checkpoint_path, config=model_config
)
def is_pretrained_model_in_classification_head_list(model_type):
return model_type in MODEL_CLASSIFICATION_HEAD_MAPPING
def _set_model_config(checkpoint_path):
if task in (SEQCLASSIFICATION, SEQREGRESSION):
if per_model_config:
model_config = AutoConfig.from_pretrained(
checkpoint_path,
num_labels=model_config_num_labels,
**per_model_config,
)
else:
model_config = AutoConfig.from_pretrained(
checkpoint_path, num_labels=model_config_num_labels
)
return model_config
else:
if per_model_config:
model_config = AutoConfig.from_pretrained(
checkpoint_path,
**per_model_config,
)
else:
model_config = AutoConfig.from_pretrained(checkpoint_path)
return model_config
if task == SEQCLASSIFICATION:
num_labels_old = AutoConfig.from_pretrained(checkpoint_path).num_labels
if is_pretrained_model_in_classification_head_list(this_model_type):
model_config_num_labels = num_labels_old
else:
model_config_num_labels = num_labels
model_config = _set_model_config(checkpoint_path)
if is_pretrained_model_in_classification_head_list(this_model_type):
if num_labels != num_labels_old:
this_model = get_this_model(task)
model_config.num_labels = num_labels
this_model.num_labels = num_labels
this_model.classifier = (
AutoSeqClassificationHead.from_model_type_and_config(
this_model_type, model_config
)
)
else:
this_model = get_this_model(task)
else:
this_model = get_this_model(task)
this_model.resize_token_embeddings(this_vocab_size)
return this_model
else:
if task == SEQREGRESSION:
model_config_num_labels = 1
model_config = _set_model_config(checkpoint_path)
this_model = get_this_model(task)
return this_model
def compute_checkpoint_freq(
train_data_size,
custom_hpo_args,
num_train_epochs,
batch_size,
):
ckpt_step_freq = (
int(
min(num_train_epochs, 1)
* train_data_size
/ batch_size
/ custom_hpo_args.ckpt_per_epoch
)
+ 1
)
return ckpt_step_freq
@dataclass
class HPOArgs:
"""The HPO setting.
Args:
output_dir (str): data root directory for outputing the log, etc.
model_path (str, optional, defaults to "facebook/muppet-roberta-base"): A string,
the path of the language model file, either a path from huggingface
model card huggingface.co/models, or a local path for the model.
fp16 (bool, optional, defaults to "False"): A bool, whether to use FP16.
max_seq_length (int, optional, defaults to 128): An integer, the max length of the sequence.
ckpt_per_epoch (int, optional, defaults to 1): An integer, the number of checkpoints per epoch.
"""
output_dir: str = field(
default="data/output/", metadata={"help": "data dir", "required": True}
)
model_path: str = field(
default="facebook/muppet-roberta-base",
metadata={"help": "model path model for HPO"},
)
fp16: bool = field(default=True, metadata={"help": "whether to use the FP16 mode"})
max_seq_length: int = field(default=128, metadata={"help": "max seq length"})
ckpt_per_epoch: int = field(default=1, metadata={"help": "checkpoint per epoch"})
@staticmethod
def load_args():
from dataclasses import fields
arg_parser = argparse.ArgumentParser()
for each_field in fields(HPOArgs):
print(each_field)
arg_parser.add_argument(
"--" + each_field.name,
type=each_field.type,
help=each_field.metadata["help"],
required=each_field.metadata["required"]
if "required" in each_field.metadata
else False,
choices=each_field.metadata["choices"]
if "choices" in each_field.metadata
else None,
default=each_field.default,
)
console_args, unknown = arg_parser.parse_known_args()
return console_args