mirror of
https://github.com/microsoft/autogen.git
synced 2025-07-26 18:31:36 +00:00

* Add test_autohf_summarization.py * adding seq2seq * Update flaml/nlp/huggingface/trainer.py * rouge metrics Co-authored-by: XinZofStevens <xzhao4346@gmail.com> Co-authored-by: JinzhuoWu <wujinzhuo0105@gmail.com> Co-authored-by: Chi Wang <wang.chi@microsoft.com>
389 lines
12 KiB
Python
389 lines
12 KiB
Python
import argparse
|
|
from dataclasses import dataclass, field
|
|
from typing import Dict, Any
|
|
|
|
from ..data import SUMMARIZATION, SEQREGRESSION, SEQCLASSIFICATION, NLG_TASKS
|
|
|
|
|
|
def load_default_huggingface_metric_for_task(task):
|
|
if task == SEQCLASSIFICATION:
|
|
return "accuracy", "max"
|
|
elif task == SEQREGRESSION:
|
|
return "rmse", "max"
|
|
elif task == SUMMARIZATION:
|
|
return "rouge", "max"
|
|
# TODO: elif task == your task, return the default metric name for your task,
|
|
# e.g., if task == MULTIPLECHOICE, return "accuracy"
|
|
# notice this metric name has to be in ['accuracy', 'bertscore', 'bleu', 'bleurt',
|
|
# 'cer', 'chrf', 'code_eval', 'comet', 'competition_math', 'coval', 'cuad',
|
|
# 'f1', 'gleu', 'glue', 'google_bleu', 'indic_glue', 'matthews_correlation',
|
|
# 'meteor', 'pearsonr', 'precision', 'recall', 'rouge', 'sacrebleu', 'sari',
|
|
# 'seqeval', 'spearmanr', 'squad', 'squad_v2', 'super_glue', 'ter', 'wer',
|
|
# 'wiki_split', 'xnli']
|
|
|
|
|
|
global tokenized_column_names
|
|
|
|
|
|
def tokenize_text(X, Y=None, task=None, custom_hpo_args=None):
|
|
if task in (SEQCLASSIFICATION, SEQREGRESSION):
|
|
X_tokenized, _ = tokenize_onedataframe(
|
|
X, this_tokenizer=None, task=task, custom_hpo_args=custom_hpo_args
|
|
)
|
|
return X_tokenized, None
|
|
elif task in NLG_TASKS:
|
|
return tokenize_seq2seq(X, Y, task=task, custom_hpo_args=custom_hpo_args)
|
|
|
|
|
|
def tokenize_seq2seq(X, Y, task=None, custom_hpo_args=None):
|
|
model_inputs, tokenizer = tokenize_onedataframe(
|
|
X,
|
|
this_tokenizer=None,
|
|
task=task,
|
|
custom_hpo_args=custom_hpo_args,
|
|
)
|
|
labels = None
|
|
if Y is not None:
|
|
labels, _ = tokenize_onedataframe(
|
|
Y.to_frame(),
|
|
this_tokenizer=tokenizer,
|
|
task=task,
|
|
custom_hpo_args=custom_hpo_args,
|
|
)
|
|
labels["label"] = [
|
|
[(each_l if each_l != tokenizer.pad_token_id else -100) for each_l in label]
|
|
for label in labels["input_ids"]
|
|
]
|
|
labels = labels.drop(
|
|
columns=["attention_mask", "input_ids", "decoder_input_ids"]
|
|
)
|
|
return model_inputs, labels
|
|
|
|
|
|
def tokenize_onedataframe(
|
|
X,
|
|
this_tokenizer=None,
|
|
task=None,
|
|
custom_hpo_args=None,
|
|
):
|
|
from transformers import AutoTokenizer
|
|
import pandas
|
|
|
|
global tokenized_column_names
|
|
|
|
if this_tokenizer:
|
|
with this_tokenizer.as_target_tokenizer():
|
|
d = X.apply(
|
|
lambda x: tokenize_row(
|
|
x,
|
|
this_tokenizer,
|
|
prefix=("",) if task is SUMMARIZATION else None,
|
|
task=task,
|
|
custom_hpo_args=custom_hpo_args,
|
|
),
|
|
axis=1,
|
|
result_type="expand",
|
|
)
|
|
else:
|
|
this_tokenizer = AutoTokenizer.from_pretrained(
|
|
custom_hpo_args.model_path, use_fast=True
|
|
)
|
|
d = X.apply(
|
|
lambda x: tokenize_row(
|
|
x,
|
|
this_tokenizer,
|
|
prefix=("summarize: ",) if task is SUMMARIZATION else None,
|
|
task=task,
|
|
custom_hpo_args=custom_hpo_args,
|
|
),
|
|
axis=1,
|
|
result_type="expand",
|
|
)
|
|
X_tokenized = pandas.DataFrame(columns=tokenized_column_names)
|
|
X_tokenized[tokenized_column_names] = d
|
|
return X_tokenized, this_tokenizer
|
|
|
|
|
|
def postprocess_text(preds, labels):
|
|
import nltk
|
|
|
|
nltk.download("punkt")
|
|
preds = [pred.strip() for pred in preds]
|
|
labels = [label.strip() for label in labels]
|
|
|
|
# rougeLSum expects newline after each sentence
|
|
preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in preds]
|
|
labels = ["\n".join(nltk.sent_tokenize(label)) for label in labels]
|
|
|
|
return preds, labels
|
|
|
|
|
|
def tokenize_row(
|
|
this_row, this_tokenizer, prefix=None, task=None, custom_hpo_args=None
|
|
):
|
|
global tokenized_column_names
|
|
assert (
|
|
"max_seq_length" in custom_hpo_args.__dict__
|
|
), "max_seq_length must be provided for glue"
|
|
|
|
if prefix:
|
|
this_row = tuple(["".join(x) for x in zip(prefix, this_row)])
|
|
|
|
tokenized_example = this_tokenizer(
|
|
*tuple(this_row),
|
|
padding="max_length",
|
|
max_length=custom_hpo_args.max_seq_length,
|
|
truncation=True,
|
|
)
|
|
if task in NLG_TASKS:
|
|
tokenized_example["decoder_input_ids"] = tokenized_example["input_ids"]
|
|
tokenized_column_names = sorted(tokenized_example.keys())
|
|
return [tokenized_example[x] for x in tokenized_column_names]
|
|
|
|
|
|
def separate_config(config, task):
|
|
if task in NLG_TASKS:
|
|
from transformers import Seq2SeqTrainingArguments, TrainingArguments
|
|
|
|
trainargs_class_list = [Seq2SeqTrainingArguments, TrainingArguments]
|
|
else:
|
|
from transformers import TrainingArguments
|
|
|
|
trainargs_class_list = [TrainingArguments]
|
|
|
|
training_args_config = {}
|
|
per_model_config = {}
|
|
|
|
for key, val in config.items():
|
|
is_in_training_args = any(key in x.__dict__ for x in trainargs_class_list)
|
|
if is_in_training_args:
|
|
training_args_config[key] = val
|
|
else:
|
|
per_model_config[key] = val
|
|
|
|
return training_args_config, per_model_config
|
|
|
|
|
|
def get_num_labels(task, y_train):
|
|
from ..data import SEQCLASSIFICATION, SEQREGRESSION
|
|
|
|
if task == SEQREGRESSION:
|
|
return 1
|
|
elif task == SEQCLASSIFICATION:
|
|
return len(set(y_train))
|
|
else:
|
|
return None
|
|
|
|
|
|
def _clean_value(value: Any) -> str:
|
|
if isinstance(value, float):
|
|
return "{:.5}".format(value)
|
|
else:
|
|
return str(value).replace("/", "_")
|
|
|
|
|
|
def format_vars(resolved_vars: Dict) -> str:
|
|
"""Formats the resolved variable dict into a single string."""
|
|
out = []
|
|
for path, value in sorted(resolved_vars.items()):
|
|
if path[0] in ["run", "env", "resources_per_trial"]:
|
|
continue # TrialRunner already has these in the experiment_tag
|
|
pieces = []
|
|
last_string = True
|
|
for k in path[::-1]:
|
|
if isinstance(k, int):
|
|
pieces.append(str(k))
|
|
elif last_string:
|
|
last_string = False
|
|
pieces.append(k)
|
|
pieces.reverse()
|
|
out.append(_clean_value("_".join(pieces)) + "=" + _clean_value(value))
|
|
return ",".join(out)
|
|
|
|
|
|
counter = 0
|
|
|
|
|
|
def date_str():
|
|
from datetime import datetime
|
|
|
|
return datetime.today().strftime("%Y-%m-%d_%H-%M-%S")
|
|
|
|
|
|
def _generate_dirname(experiment_tag, trial_id):
|
|
generated_dirname = f"train_{str(trial_id)}_{experiment_tag}"
|
|
generated_dirname = generated_dirname[:130]
|
|
generated_dirname += f"_{date_str()}"
|
|
return generated_dirname.replace("/", "_")
|
|
|
|
|
|
def get_logdir_name(dirname, local_dir):
|
|
import os
|
|
|
|
local_dir = os.path.expanduser(local_dir)
|
|
logdir = os.path.join(local_dir, dirname)
|
|
return logdir
|
|
|
|
|
|
def get_trial_fold_name(local_dir, trial_config, trial_id):
|
|
global counter
|
|
counter = counter + 1
|
|
experiment_tag = "{0}_{1}".format(str(counter), format_vars(trial_config))
|
|
logdir = get_logdir_name(
|
|
_generate_dirname(experiment_tag, trial_id=trial_id), local_dir
|
|
)
|
|
return logdir
|
|
|
|
|
|
def load_model(checkpoint_path, task, num_labels, per_model_config=None):
|
|
from transformers import AutoConfig
|
|
from .huggingface.switch_head_auto import (
|
|
AutoSeqClassificationHead,
|
|
MODEL_CLASSIFICATION_HEAD_MAPPING,
|
|
)
|
|
from ..data import SEQCLASSIFICATION, SEQREGRESSION
|
|
|
|
this_model_type = AutoConfig.from_pretrained(checkpoint_path).model_type
|
|
this_vocab_size = AutoConfig.from_pretrained(checkpoint_path).vocab_size
|
|
|
|
def get_this_model(task):
|
|
from transformers import AutoModelForSequenceClassification
|
|
from transformers import AutoModelForSeq2SeqLM
|
|
|
|
if task in (SEQCLASSIFICATION, SEQREGRESSION):
|
|
return AutoModelForSequenceClassification.from_pretrained(
|
|
checkpoint_path, config=model_config
|
|
)
|
|
elif task in NLG_TASKS:
|
|
return AutoModelForSeq2SeqLM.from_pretrained(
|
|
checkpoint_path, config=model_config
|
|
)
|
|
|
|
def is_pretrained_model_in_classification_head_list(model_type):
|
|
return model_type in MODEL_CLASSIFICATION_HEAD_MAPPING
|
|
|
|
def _set_model_config(checkpoint_path):
|
|
if task in (SEQCLASSIFICATION, SEQREGRESSION):
|
|
if per_model_config:
|
|
model_config = AutoConfig.from_pretrained(
|
|
checkpoint_path,
|
|
num_labels=model_config_num_labels,
|
|
**per_model_config,
|
|
)
|
|
else:
|
|
model_config = AutoConfig.from_pretrained(
|
|
checkpoint_path, num_labels=model_config_num_labels
|
|
)
|
|
return model_config
|
|
else:
|
|
if per_model_config:
|
|
model_config = AutoConfig.from_pretrained(
|
|
checkpoint_path,
|
|
**per_model_config,
|
|
)
|
|
else:
|
|
model_config = AutoConfig.from_pretrained(checkpoint_path)
|
|
return model_config
|
|
|
|
if task == SEQCLASSIFICATION:
|
|
num_labels_old = AutoConfig.from_pretrained(checkpoint_path).num_labels
|
|
if is_pretrained_model_in_classification_head_list(this_model_type):
|
|
model_config_num_labels = num_labels_old
|
|
else:
|
|
model_config_num_labels = num_labels
|
|
model_config = _set_model_config(checkpoint_path)
|
|
|
|
if is_pretrained_model_in_classification_head_list(this_model_type):
|
|
if num_labels != num_labels_old:
|
|
this_model = get_this_model(task)
|
|
model_config.num_labels = num_labels
|
|
this_model.num_labels = num_labels
|
|
this_model.classifier = (
|
|
AutoSeqClassificationHead.from_model_type_and_config(
|
|
this_model_type, model_config
|
|
)
|
|
)
|
|
else:
|
|
this_model = get_this_model(task)
|
|
else:
|
|
this_model = get_this_model(task)
|
|
this_model.resize_token_embeddings(this_vocab_size)
|
|
return this_model
|
|
else:
|
|
if task == SEQREGRESSION:
|
|
model_config_num_labels = 1
|
|
model_config = _set_model_config(checkpoint_path)
|
|
this_model = get_this_model(task)
|
|
return this_model
|
|
|
|
|
|
def compute_checkpoint_freq(
|
|
train_data_size,
|
|
custom_hpo_args,
|
|
num_train_epochs,
|
|
batch_size,
|
|
):
|
|
ckpt_step_freq = (
|
|
int(
|
|
min(num_train_epochs, 1)
|
|
* train_data_size
|
|
/ batch_size
|
|
/ custom_hpo_args.ckpt_per_epoch
|
|
)
|
|
+ 1
|
|
)
|
|
return ckpt_step_freq
|
|
|
|
|
|
@dataclass
|
|
class HPOArgs:
|
|
"""The HPO setting.
|
|
|
|
Args:
|
|
output_dir (str): data root directory for outputing the log, etc.
|
|
model_path (str, optional, defaults to "facebook/muppet-roberta-base"): A string,
|
|
the path of the language model file, either a path from huggingface
|
|
model card huggingface.co/models, or a local path for the model.
|
|
fp16 (bool, optional, defaults to "False"): A bool, whether to use FP16.
|
|
max_seq_length (int, optional, defaults to 128): An integer, the max length of the sequence.
|
|
ckpt_per_epoch (int, optional, defaults to 1): An integer, the number of checkpoints per epoch.
|
|
|
|
"""
|
|
|
|
output_dir: str = field(
|
|
default="data/output/", metadata={"help": "data dir", "required": True}
|
|
)
|
|
|
|
model_path: str = field(
|
|
default="facebook/muppet-roberta-base",
|
|
metadata={"help": "model path model for HPO"},
|
|
)
|
|
|
|
fp16: bool = field(default=True, metadata={"help": "whether to use the FP16 mode"})
|
|
|
|
max_seq_length: int = field(default=128, metadata={"help": "max seq length"})
|
|
|
|
ckpt_per_epoch: int = field(default=1, metadata={"help": "checkpoint per epoch"})
|
|
|
|
@staticmethod
|
|
def load_args():
|
|
from dataclasses import fields
|
|
|
|
arg_parser = argparse.ArgumentParser()
|
|
for each_field in fields(HPOArgs):
|
|
print(each_field)
|
|
arg_parser.add_argument(
|
|
"--" + each_field.name,
|
|
type=each_field.type,
|
|
help=each_field.metadata["help"],
|
|
required=each_field.metadata["required"]
|
|
if "required" in each_field.metadata
|
|
else False,
|
|
choices=each_field.metadata["choices"]
|
|
if "choices" in each_field.metadata
|
|
else None,
|
|
default=each_field.default,
|
|
)
|
|
console_args, unknown = arg_parser.parse_known_args()
|
|
return console_args
|