autogen/test/nlp/test_autohf_summarization.py
Chi Wang 595af7a04f
install editable package in codespace (#826)
* install editable package in codespace

* fix test error in test_forecast

* fix test error in test_space

* openml version

* break tests; pre-commit

* skip on py10+win32

* install mlflow in test

* install mlflow in [test]

* skip test in windows

* import

* handle PermissionError

* skip test in windows

* skip test in windows

* skip test in windows

* skip test in windows

* remove ts_forecast_panel from doc
2022-11-27 14:22:54 -05:00

62 lines
1.6 KiB
Python

import sys
import pytest
import requests
from utils import get_toy_data_summarization, get_automl_settings
import os
import shutil
@pytest.mark.skipif(
sys.platform in ["darwin", "win32"] or sys.version < "3.7",
reason="do not run on mac os, windows or py3.6",
)
def test_summarization():
# TODO: manual test for how effective postprocess_seq2seq_prediction_label is
from flaml import AutoML
X_train, y_train, X_val, y_val, X_test = get_toy_data_summarization()
automl = AutoML()
automl_settings = get_automl_settings()
automl_settings["task"] = "summarization"
automl_settings["metric"] = "rouge1"
automl_settings["time_budget"] = 2 * automl_settings["time_budget"]
automl_settings["fit_kwargs_by_estimator"]["transformer"][
"model_path"
] = "patrickvonplaten/t5-tiny-random"
try:
automl.fit(
X_train=X_train,
y_train=y_train,
X_val=X_val,
y_val=y_val,
**automl_settings
)
except requests.exceptions.HTTPError:
return
automl_settings.pop("max_iter", None)
automl_settings.pop("use_ray", None)
automl_settings.pop("estimator_list", None)
automl.retrain_from_log(
X_train=X_train,
y_train=y_train,
train_full=True,
record_id=0,
**automl_settings
)
automl.predict(X_test)
if os.path.exists("test/data/output/"):
try:
shutil.rmtree("test/data/output/")
except PermissionError:
print("PermissionError when deleting test/data/output/")
if __name__ == "__main__":
test_summarization()