autogen/flaml/data.py
Chi Wang f4529dfe89
package name in setup (#198)
* package name

* learning to rank example: close #200

* try import prophet #201
2021-09-11 21:19:18 -07:00

370 lines
14 KiB
Python

"""!
* Copyright (c) 2020-2021 Microsoft Corporation. All rights reserved.
* Licensed under the MIT License.
"""
import numpy as np
from scipy.sparse import vstack, issparse
import pandas as pd
from .training_log import training_log_reader
from datetime import datetime
def load_openml_dataset(
dataset_id, data_dir=None, random_state=0, dataset_format="dataframe"
):
"""Load dataset from open ML.
If the file is not cached locally, download it from open ML.
Args:
dataset_id: An integer of the dataset id in openml
data_dir: A string of the path to store and load the data
random_state: An integer of the random seed for splitting data
dataset_format: A string specifying the format of returned dataset. Default is 'dataframe'.
Can choose from ['dataframe', 'array'].
If 'dataframe', the returned dataset will be a Pandas DataFrame.
If 'array', the returned dataset will be a NumPy array or a SciPy sparse matrix.
Returns:
X_train: Training data
X_test: Test data
y_train: A series or array of labels for training data
y_test: A series or array of labels for test data
"""
import os
import openml
import pickle
from sklearn.model_selection import train_test_split
filename = "openml_ds" + str(dataset_id) + ".pkl"
filepath = os.path.join(data_dir, filename)
if os.path.isfile(filepath):
print("load dataset from", filepath)
with open(filepath, "rb") as f:
dataset = pickle.load(f)
else:
print("download dataset from openml")
dataset = openml.datasets.get_dataset(dataset_id)
if not os.path.exists(data_dir):
os.makedirs(data_dir)
with open(filepath, "wb") as f:
pickle.dump(dataset, f, pickle.HIGHEST_PROTOCOL)
print("Dataset name:", dataset.name)
X, y, *__ = dataset.get_data(
target=dataset.default_target_attribute, dataset_format=dataset_format
)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=random_state)
print(
"X_train.shape: {}, y_train.shape: {};\nX_test.shape: {}, y_test.shape: {}".format(
X_train.shape,
y_train.shape,
X_test.shape,
y_test.shape,
)
)
return X_train, X_test, y_train, y_test
def load_openml_task(task_id, data_dir):
"""Load task from open ML.
Use the first fold of the task.
If the file is not cached locally, download it from open ML.
Args:
task_id: An integer of the task id in openml
data_dir: A string of the path to store and load the data
Returns:
X_train: A dataframe of training data
X_test: A dataframe of test data
y_train: A series of labels for training data
y_test: A series of labels for test data
"""
import os
import openml
import pickle
task = openml.tasks.get_task(task_id)
filename = "openml_task" + str(task_id) + ".pkl"
filepath = os.path.join(data_dir, filename)
if os.path.isfile(filepath):
print("load dataset from", filepath)
with open(filepath, "rb") as f:
dataset = pickle.load(f)
else:
print("download dataset from openml")
dataset = task.get_dataset()
with open(filepath, "wb") as f:
pickle.dump(dataset, f, pickle.HIGHEST_PROTOCOL)
X, y, _, _ = dataset.get_data(task.target_name)
train_indices, test_indices = task.get_train_test_split_indices(
repeat=0,
fold=0,
sample=0,
)
X_train = X.iloc[train_indices]
y_train = y[train_indices]
X_test = X.iloc[test_indices]
y_test = y[test_indices]
print(
"X_train.shape: {}, y_train.shape: {},\nX_test.shape: {}, y_test.shape: {}".format(
X_train.shape,
y_train.shape,
X_test.shape,
y_test.shape,
)
)
return X_train, X_test, y_train, y_test
def get_output_from_log(filename, time_budget):
"""Get output from log file
Args:
filename: A string of the log file name
time_budget: A float of the time budget in seconds
Returns:
search_time_list: A list of the finished time of each logged iter
best_error_list:
A list of the best validation error after each logged iter
error_list: A list of the validation error of each logged iter
config_list:
A list of the estimator, sample size and config of each logged iter
logged_metric_list: A list of the logged metric of each logged iter
"""
best_config = None
best_learner = None
best_val_loss = float("+inf")
search_time_list = []
config_list = []
best_error_list = []
error_list = []
logged_metric_list = []
best_config_list = []
with training_log_reader(filename) as reader:
for record in reader.records():
time_used = record.wall_clock_time
val_loss = record.validation_loss
config = record.config
learner = record.learner.split("_")[0]
sample_size = record.sample_size
metric = record.logged_metric
if time_used < time_budget and np.isfinite(val_loss):
if val_loss < best_val_loss:
best_val_loss = val_loss
best_config = config
best_learner = learner
best_config_list.append(best_config)
search_time_list.append(time_used)
best_error_list.append(best_val_loss)
logged_metric_list.append(metric)
error_list.append(val_loss)
config_list.append(
{
"Current Learner": learner,
"Current Sample": sample_size,
"Current Hyper-parameters": record.config,
"Best Learner": best_learner,
"Best Hyper-parameters": best_config,
}
)
return (
search_time_list,
best_error_list,
error_list,
config_list,
logged_metric_list,
)
def concat(X1, X2):
"""concatenate two matrices vertically"""
if isinstance(X1, pd.DataFrame) or isinstance(X1, pd.Series):
df = pd.concat([X1, X2], sort=False)
df.reset_index(drop=True, inplace=True)
if isinstance(X1, pd.DataFrame):
cat_columns = X1.select_dtypes(include="category").columns
if len(cat_columns):
df[cat_columns] = df[cat_columns].astype("category")
return df
if issparse(X1):
return vstack((X1, X2))
else:
return np.concatenate([X1, X2])
class DataTransformer:
"""transform X, y"""
def fit_transform(self, X, y, task):
if isinstance(X, pd.DataFrame):
X = X.copy()
n = X.shape[0]
cat_columns, num_columns, datetime_columns = [], [], []
drop = False
for column in X.columns:
# sklearn\utils\validation.py needs int/float values
if X[column].dtype.name in ("object", "category"):
if (
X[column].nunique() == 1
or X[column].nunique(dropna=True)
== n - X[column].isnull().sum()
):
X.drop(columns=column, inplace=True)
drop = True
elif X[column].dtype.name == "category":
current_categories = X[column].cat.categories
if "__NAN__" not in current_categories:
X[column] = (
X[column]
.cat.add_categories("__NAN__")
.fillna("__NAN__")
)
cat_columns.append(column)
else:
X[column] = X[column].fillna("__NAN__")
cat_columns.append(column)
else:
# print(X[column].dtype.name)
if X[column].nunique(dropna=True) < 2:
X.drop(columns=column, inplace=True)
drop = True
else:
if X[column].dtype.name == "datetime64[ns]":
tmp_dt = X[column].dt
new_columns_dict = {
f"year_{column}": tmp_dt.year,
f"month_{column}": tmp_dt.month,
f"day_{column}": tmp_dt.day,
f"hour_{column}": tmp_dt.hour,
f"minute_{column}": tmp_dt.minute,
f"second_{column}": tmp_dt.second,
f"dayofweek_{column}": tmp_dt.dayofweek,
f"dayofyear_{column}": tmp_dt.dayofyear,
f"quarter_{column}": tmp_dt.quarter,
}
for new_col_name in new_columns_dict.keys():
if (
new_col_name not in X.columns
and new_columns_dict.get(new_col_name).nunique(
dropna=False
)
>= 2
):
X[new_col_name] = new_columns_dict.get(new_col_name)
num_columns.append(new_col_name)
X[column] = X[column].map(datetime.toordinal)
datetime_columns.append(column)
del tmp_dt
else:
X[column] = X[column].fillna(np.nan)
num_columns.append(column)
X = X[cat_columns + num_columns]
if cat_columns:
X[cat_columns] = X[cat_columns].astype("category")
if num_columns:
X_num = X[num_columns]
if np.issubdtype(X_num.columns.dtype, np.integer) and (
drop
or min(X_num.columns) != 0
or max(X_num.columns) != X_num.shape[1] - 1
):
X_num.columns = range(X_num.shape[1])
drop = True
else:
drop = False
from sklearn.impute import SimpleImputer
from sklearn.compose import ColumnTransformer
self.transformer = ColumnTransformer(
[
(
"continuous",
SimpleImputer(missing_values=np.nan, strategy="median"),
X_num.columns,
)
]
)
X[num_columns] = self.transformer.fit_transform(X_num)
self._cat_columns, self._num_columns, self._datetime_columns = (
cat_columns,
num_columns,
datetime_columns,
)
self._drop = drop
if task in (
"binary",
"multi",
"classification",
) or not pd.api.types.is_numeric_dtype(y):
from sklearn.preprocessing import LabelEncoder
self.label_transformer = LabelEncoder()
y = self.label_transformer.fit_transform(y)
else:
self.label_transformer = None
return X, y
def transform(self, X):
X = X.copy()
if isinstance(X, pd.DataFrame):
cat_columns, num_columns, datetime_columns = (
self._cat_columns,
self._num_columns,
self._datetime_columns,
)
if datetime_columns:
for column in datetime_columns:
tmp_dt = X[column].dt
new_columns_dict = {
f"year_{column}": tmp_dt.year,
f"month_{column}": tmp_dt.month,
f"day_{column}": tmp_dt.day,
f"hour_{column}": tmp_dt.hour,
f"minute_{column}": tmp_dt.minute,
f"second_{column}": tmp_dt.second,
f"dayofweek_{column}": tmp_dt.dayofweek,
f"dayofyear_{column}": tmp_dt.dayofyear,
f"quarter_{column}": tmp_dt.quarter,
}
for new_col_name in new_columns_dict.keys():
if (
new_col_name not in X.columns
and new_columns_dict.get(new_col_name).nunique(dropna=False)
>= 2
):
X[new_col_name] = new_columns_dict.get(new_col_name)
X[column] = X[column].map(datetime.toordinal)
del tmp_dt
X = X[cat_columns + num_columns].copy()
for column in cat_columns:
if X[column].dtype.name == "object":
X[column] = X[column].fillna("__NAN__")
elif X[column].dtype.name == "category":
current_categories = X[column].cat.categories
if "__NAN__" not in current_categories:
X[column] = (
X[column].cat.add_categories("__NAN__").fillna("__NAN__")
)
if cat_columns:
X[cat_columns] = X[cat_columns].astype("category")
if num_columns:
X_num = X[num_columns].fillna(np.nan)
if self._drop:
X_num.columns = range(X_num.shape[1])
X[num_columns] = self.transformer.transform(X_num)
return X
def group_counts(groups):
_, i, c = np.unique(groups, return_counts=True, return_index=True)
return c[np.argsort(i)]