mirror of
https://github.com/microsoft/autogen.git
synced 2025-07-29 03:40:35 +00:00
1115 lines
38 KiB
Python
1115 lines
38 KiB
Python
"""!
|
||
* Copyright (c) Microsoft Corporation. All rights reserved.
|
||
* Licensed under the MIT License.
|
||
"""
|
||
|
||
import numpy as np
|
||
import xgboost as xgb
|
||
import time
|
||
from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier
|
||
from sklearn.ensemble import ExtraTreesRegressor, ExtraTreesClassifier
|
||
from sklearn.linear_model import LogisticRegression
|
||
from lightgbm import LGBMClassifier, LGBMRegressor, LGBMRanker
|
||
from scipy.sparse import issparse
|
||
import pandas as pd
|
||
from . import tune
|
||
from .data import group_counts
|
||
|
||
import logging
|
||
|
||
logger = logging.getLogger(__name__)
|
||
|
||
|
||
class BaseEstimator:
|
||
"""The abstract class for all learners
|
||
|
||
Typical example:
|
||
XGBoostEstimator: for regression
|
||
XGBoostSklearnEstimator: for classification
|
||
LGBMEstimator, RandomForestEstimator, LRL1Classifier, LRL2Classifier:
|
||
for both regression and classification
|
||
"""
|
||
|
||
def __init__(self, task="binary", **params):
|
||
"""Constructor
|
||
|
||
Args:
|
||
task: A string of the task type, one of
|
||
'binary', 'multi', 'regression', 'rank', 'forecast'
|
||
n_jobs: An integer of the number of parallel threads
|
||
params: A dictionary of the hyperparameter names and values
|
||
"""
|
||
self.params = params
|
||
self.estimator_class = self._model = None
|
||
self._task = task
|
||
if "_estimator_type" in params:
|
||
self._estimator_type = params["_estimator_type"]
|
||
del self.params["_estimator_type"]
|
||
else:
|
||
self._estimator_type = (
|
||
"classifier" if task in ("binary", "multi") else "regressor"
|
||
)
|
||
|
||
def get_params(self, deep=False):
|
||
params = self.params.copy()
|
||
params["task"] = self._task
|
||
if hasattr(self, "_estimator_type"):
|
||
params["_estimator_type"] = self._estimator_type
|
||
return params
|
||
|
||
@property
|
||
def classes_(self):
|
||
return self._model.classes_
|
||
|
||
@property
|
||
def n_features_in_(self):
|
||
return self.model.n_features_in_
|
||
|
||
@property
|
||
def model(self):
|
||
"""Trained model after fit() is called, or None before fit() is called"""
|
||
return self._model
|
||
|
||
@property
|
||
def estimator(self):
|
||
"""Trained model after fit() is called, or None before fit() is called"""
|
||
return self._model
|
||
|
||
def _preprocess(self, X):
|
||
return X
|
||
|
||
def _fit(self, X_train, y_train, **kwargs):
|
||
|
||
current_time = time.time()
|
||
if "groups" in kwargs:
|
||
kwargs = kwargs.copy()
|
||
if self._task == "rank":
|
||
kwargs["group"] = group_counts(kwargs["groups"])
|
||
# groups_val = kwargs.get('groups_val')
|
||
# if groups_val is not None:
|
||
# kwargs['eval_group'] = [group_counts(groups_val)]
|
||
# kwargs['eval_set'] = [
|
||
# (kwargs['X_val'], kwargs['y_val'])]
|
||
# kwargs['verbose'] = False
|
||
# del kwargs['groups_val'], kwargs['X_val'], kwargs['y_val']
|
||
del kwargs["groups"]
|
||
X_train = self._preprocess(X_train)
|
||
model = self.estimator_class(**self.params)
|
||
model.fit(X_train, y_train, **kwargs)
|
||
train_time = time.time() - current_time
|
||
self._model = model
|
||
return train_time
|
||
|
||
def fit(self, X_train, y_train, budget=None, **kwargs):
|
||
"""Train the model from given training data
|
||
|
||
Args:
|
||
X_train: A numpy array of training data in shape n*m
|
||
y_train: A numpy array of labels in shape n*1
|
||
budget: A float of the time budget in seconds
|
||
|
||
Returns:
|
||
train_time: A float of the training time in seconds
|
||
"""
|
||
return self._fit(X_train, y_train, **kwargs)
|
||
|
||
def predict(self, X_test):
|
||
"""Predict label from features
|
||
|
||
Args:
|
||
X_test: A numpy array of featurized instances, shape n*m
|
||
|
||
Returns:
|
||
A numpy array of shape n*1.
|
||
Each element is the label for a instance
|
||
"""
|
||
if self._model is not None:
|
||
X_test = self._preprocess(X_test)
|
||
return self._model.predict(X_test)
|
||
else:
|
||
return np.ones(X_test.shape[0])
|
||
|
||
def predict_proba(self, X_test):
|
||
"""Predict the probability of each class from features
|
||
|
||
Only works for classification problems
|
||
|
||
Args:
|
||
model: An object of trained model with method predict_proba()
|
||
X_test: A numpy array of featurized instances, shape n*m
|
||
|
||
Returns:
|
||
A numpy array of shape n*c. c is the # classes
|
||
Each element at (i,j) is the probability for instance i to be in
|
||
class j
|
||
"""
|
||
assert self._task in (
|
||
"binary",
|
||
"multi",
|
||
), "predict_prob() only for classification task."
|
||
X_test = self._preprocess(X_test)
|
||
return self._model.predict_proba(X_test)
|
||
|
||
def cleanup(self):
|
||
pass
|
||
|
||
@classmethod
|
||
def search_space(cls, **params):
|
||
"""[required method] search space
|
||
|
||
Returns:
|
||
A dictionary of the search space.
|
||
Each key is the name of a hyperparameter, and value is a dict with
|
||
its domain and init_value (optional), cat_hp_cost (optional)
|
||
e.g.,
|
||
{'domain': tune.randint(lower=1, upper=10), 'init_value': 1}
|
||
"""
|
||
return {}
|
||
|
||
@classmethod
|
||
def size(cls, config: dict) -> float:
|
||
"""[optional method] memory size of the estimator in bytes
|
||
|
||
Args:
|
||
config - the dict of the hyperparameter config
|
||
|
||
Returns:
|
||
A float of the memory size required by the estimator to train the
|
||
given config
|
||
"""
|
||
return 1.0
|
||
|
||
@classmethod
|
||
def cost_relative2lgbm(cls) -> float:
|
||
"""[optional method] relative cost compared to lightgbm"""
|
||
return 1.0
|
||
|
||
@classmethod
|
||
def init(cls):
|
||
"""[optional method] initialize the class"""
|
||
pass
|
||
|
||
|
||
class SKLearnEstimator(BaseEstimator):
|
||
def __init__(self, task="binary", **params):
|
||
super().__init__(task, **params)
|
||
|
||
def _preprocess(self, X):
|
||
if isinstance(X, pd.DataFrame):
|
||
cat_columns = X.select_dtypes(include=["category"]).columns
|
||
if not cat_columns.empty:
|
||
X = X.copy()
|
||
X[cat_columns] = X[cat_columns].apply(lambda x: x.cat.codes)
|
||
elif isinstance(X, np.ndarray) and X.dtype.kind not in "buif":
|
||
# numpy array is not of numeric dtype
|
||
X = pd.DataFrame(X)
|
||
for col in X.columns:
|
||
if isinstance(X[col][0], str):
|
||
X[col] = X[col].astype("category").cat.codes
|
||
X = X.to_numpy()
|
||
return X
|
||
|
||
|
||
class LGBMEstimator(BaseEstimator):
|
||
@classmethod
|
||
def search_space(cls, data_size, **params):
|
||
upper = min(32768, int(data_size))
|
||
return {
|
||
"n_estimators": {
|
||
"domain": tune.lograndint(lower=4, upper=upper),
|
||
"init_value": 4,
|
||
"low_cost_init_value": 4,
|
||
},
|
||
"num_leaves": {
|
||
"domain": tune.lograndint(lower=4, upper=upper),
|
||
"init_value": 4,
|
||
"low_cost_init_value": 4,
|
||
},
|
||
"min_child_samples": {
|
||
"domain": tune.lograndint(lower=2, upper=2 ** 7 + 1),
|
||
"init_value": 20,
|
||
},
|
||
"learning_rate": {
|
||
"domain": tune.loguniform(lower=1 / 1024, upper=1.0),
|
||
"init_value": 0.1,
|
||
},
|
||
# 'subsample': {
|
||
# 'domain': tune.uniform(lower=0.1, upper=1.0),
|
||
# 'init_value': 1.0,
|
||
# },
|
||
"log_max_bin": { # log transformed with base 2
|
||
"domain": tune.lograndint(lower=3, upper=11),
|
||
"init_value": 8,
|
||
},
|
||
"colsample_bytree": {
|
||
"domain": tune.uniform(lower=0.01, upper=1.0),
|
||
"init_value": 1.0,
|
||
},
|
||
"reg_alpha": {
|
||
"domain": tune.loguniform(lower=1 / 1024, upper=1024),
|
||
"init_value": 1 / 1024,
|
||
},
|
||
"reg_lambda": {
|
||
"domain": tune.loguniform(lower=1 / 1024, upper=1024),
|
||
"init_value": 1.0,
|
||
},
|
||
}
|
||
|
||
@classmethod
|
||
def size(cls, config):
|
||
num_leaves = int(round(config.get("num_leaves") or config["max_leaves"]))
|
||
n_estimators = int(round(config["n_estimators"]))
|
||
return (num_leaves * 3 + (num_leaves - 1) * 4 + 1.0) * n_estimators * 8
|
||
|
||
def __init__(self, task="binary", log_max_bin=8, **params):
|
||
super().__init__(task, **params)
|
||
if "objective" not in self.params:
|
||
# Default: ‘regression’ for LGBMRegressor,
|
||
# ‘binary’ or ‘multiclass’ for LGBMClassifier
|
||
objective = "regression"
|
||
if "binary" in task:
|
||
objective = "binary"
|
||
elif "multi" in task:
|
||
objective = "multiclass"
|
||
elif "rank" == task:
|
||
objective = "lambdarank"
|
||
self.params["objective"] = objective
|
||
if "n_estimators" in self.params:
|
||
self.params["n_estimators"] = int(round(self.params["n_estimators"]))
|
||
if "num_leaves" in self.params:
|
||
self.params["num_leaves"] = int(round(self.params["num_leaves"]))
|
||
if "min_child_samples" in self.params:
|
||
self.params["min_child_samples"] = int(
|
||
round(self.params["min_child_samples"])
|
||
)
|
||
if "max_bin" not in self.params:
|
||
self.params["max_bin"] = 1 << int(round(log_max_bin)) - 1
|
||
if "verbose" not in self.params:
|
||
self.params["verbose"] = -1
|
||
# if "subsample_freq" not in self.params:
|
||
# self.params['subsample_freq'] = 1
|
||
if "regression" == task:
|
||
self.estimator_class = LGBMRegressor
|
||
elif "rank" == task:
|
||
self.estimator_class = LGBMRanker
|
||
else:
|
||
self.estimator_class = LGBMClassifier
|
||
self._time_per_iter = None
|
||
self._train_size = 0
|
||
|
||
def _preprocess(self, X):
|
||
if (
|
||
not isinstance(X, pd.DataFrame)
|
||
and issparse(X)
|
||
and np.issubdtype(X.dtype, np.integer)
|
||
):
|
||
X = X.astype(float)
|
||
elif isinstance(X, np.ndarray) and X.dtype.kind not in "buif":
|
||
# numpy array is not of numeric dtype
|
||
X = pd.DataFrame(X)
|
||
for col in X.columns:
|
||
if isinstance(X[col][0], str):
|
||
X[col] = X[col].astype("category").cat.codes
|
||
X = X.to_numpy()
|
||
return X
|
||
|
||
def fit(self, X_train, y_train, budget=None, **kwargs):
|
||
start_time = time.time()
|
||
n_iter = self.params["n_estimators"]
|
||
if (
|
||
not self._time_per_iter or abs(self._train_size - X_train.shape[0]) > 4
|
||
) and budget is not None:
|
||
self.params["n_estimators"] = 1
|
||
self._t1 = self._fit(X_train, y_train, **kwargs)
|
||
if self._t1 >= budget:
|
||
self.params["n_estimators"] = n_iter
|
||
return self._t1
|
||
self.params["n_estimators"] = 4
|
||
self._t2 = self._fit(X_train, y_train, **kwargs)
|
||
self._time_per_iter = (
|
||
(self._t2 - self._t1) / (self.params["n_estimators"] - 1)
|
||
if self._t2 > self._t1
|
||
else self._t1
|
||
if self._t1
|
||
else 0.001
|
||
)
|
||
self._train_size = X_train.shape[0]
|
||
if self._t1 + self._t2 >= budget or n_iter == self.params["n_estimators"]:
|
||
self.params["n_estimators"] = n_iter
|
||
return time.time() - start_time
|
||
if budget is not None:
|
||
self.params["n_estimators"] = min(
|
||
n_iter,
|
||
int(
|
||
(budget - time.time() + start_time - self._t1) / self._time_per_iter
|
||
+ 1
|
||
),
|
||
)
|
||
if self.params["n_estimators"] > 0:
|
||
self._fit(X_train, y_train, **kwargs)
|
||
self.params["n_estimators"] = n_iter
|
||
train_time = time.time() - start_time
|
||
return train_time
|
||
|
||
|
||
class XGBoostEstimator(SKLearnEstimator):
|
||
"""not using sklearn API, used for regression"""
|
||
|
||
@classmethod
|
||
def search_space(cls, data_size, **params):
|
||
upper = min(32768, int(data_size))
|
||
return {
|
||
"n_estimators": {
|
||
"domain": tune.lograndint(lower=4, upper=upper),
|
||
"init_value": 4,
|
||
"low_cost_init_value": 4,
|
||
},
|
||
"max_leaves": {
|
||
"domain": tune.lograndint(lower=4, upper=upper),
|
||
"init_value": 4,
|
||
"low_cost_init_value": 4,
|
||
},
|
||
"min_child_weight": {
|
||
"domain": tune.loguniform(lower=0.001, upper=128),
|
||
"init_value": 1,
|
||
},
|
||
"learning_rate": {
|
||
"domain": tune.loguniform(lower=1 / 1024, upper=1.0),
|
||
"init_value": 0.1,
|
||
},
|
||
"subsample": {
|
||
"domain": tune.uniform(lower=0.1, upper=1.0),
|
||
"init_value": 1.0,
|
||
},
|
||
"colsample_bylevel": {
|
||
"domain": tune.uniform(lower=0.01, upper=1.0),
|
||
"init_value": 1.0,
|
||
},
|
||
"colsample_bytree": {
|
||
"domain": tune.uniform(lower=0.01, upper=1.0),
|
||
"init_value": 1.0,
|
||
},
|
||
"reg_alpha": {
|
||
"domain": tune.loguniform(lower=1 / 1024, upper=1024),
|
||
"init_value": 1 / 1024,
|
||
},
|
||
"reg_lambda": {
|
||
"domain": tune.loguniform(lower=1 / 1024, upper=1024),
|
||
"init_value": 1.0,
|
||
},
|
||
}
|
||
|
||
@classmethod
|
||
def size(cls, config):
|
||
return LGBMEstimator.size(config)
|
||
|
||
@classmethod
|
||
def cost_relative2lgbm(cls):
|
||
return 1.6
|
||
|
||
def __init__(
|
||
self,
|
||
task="regression",
|
||
all_thread=False,
|
||
n_jobs=1,
|
||
n_estimators=4,
|
||
max_leaves=4,
|
||
subsample=1.0,
|
||
min_child_weight=1,
|
||
learning_rate=0.1,
|
||
reg_lambda=1.0,
|
||
reg_alpha=0.0,
|
||
colsample_bylevel=1.0,
|
||
colsample_bytree=1.0,
|
||
tree_method="auto",
|
||
**params,
|
||
):
|
||
super().__init__(task, **params)
|
||
self._n_estimators = int(round(n_estimators))
|
||
self.params.update(
|
||
{
|
||
"max_leaves": int(round(max_leaves)),
|
||
"max_depth": params.get("max_depth", 0),
|
||
"grow_policy": params.get("grow_policy", "lossguide"),
|
||
"tree_method": tree_method,
|
||
"verbosity": params.get("verbosity", 0),
|
||
"nthread": n_jobs,
|
||
"learning_rate": float(learning_rate),
|
||
"subsample": float(subsample),
|
||
"reg_alpha": float(reg_alpha),
|
||
"reg_lambda": float(reg_lambda),
|
||
"min_child_weight": float(min_child_weight),
|
||
"booster": params.get("booster", "gbtree"),
|
||
"colsample_bylevel": float(colsample_bylevel),
|
||
"colsample_bytree": float(colsample_bytree),
|
||
"objective": params.get("objective"),
|
||
}
|
||
)
|
||
if all_thread:
|
||
del self.params["nthread"]
|
||
|
||
def get_params(self, deep=False):
|
||
params = super().get_params()
|
||
params["n_jobs"] = params["nthread"]
|
||
return params
|
||
|
||
def fit(self, X_train, y_train, budget=None, **kwargs):
|
||
start_time = time.time()
|
||
if not issparse(X_train):
|
||
self.params["tree_method"] = "hist"
|
||
X_train = self._preprocess(X_train)
|
||
if "sample_weight" in kwargs:
|
||
dtrain = xgb.DMatrix(X_train, label=y_train, weight=kwargs["sample_weight"])
|
||
else:
|
||
dtrain = xgb.DMatrix(X_train, label=y_train)
|
||
|
||
objective = self.params.get("objective")
|
||
if isinstance(objective, str):
|
||
obj = None
|
||
else:
|
||
obj = objective
|
||
if "objective" in self.params:
|
||
del self.params["objective"]
|
||
self._model = xgb.train(self.params, dtrain, self._n_estimators, obj=obj)
|
||
self.params["objective"] = objective
|
||
del dtrain
|
||
train_time = time.time() - start_time
|
||
return train_time
|
||
|
||
def predict(self, X_test):
|
||
if not issparse(X_test):
|
||
X_test = self._preprocess(X_test)
|
||
dtest = xgb.DMatrix(X_test)
|
||
return super().predict(dtest)
|
||
|
||
|
||
class XGBoostSklearnEstimator(SKLearnEstimator, LGBMEstimator):
|
||
"""using sklearn API, used for classification"""
|
||
|
||
@classmethod
|
||
def search_space(cls, data_size, **params):
|
||
return XGBoostEstimator.search_space(data_size)
|
||
|
||
@classmethod
|
||
def cost_relative2lgbm(cls):
|
||
return XGBoostEstimator.cost_relative2lgbm()
|
||
|
||
def __init__(
|
||
self,
|
||
task="binary",
|
||
n_jobs=1,
|
||
n_estimators=4,
|
||
max_leaves=4,
|
||
subsample=1.0,
|
||
min_child_weight=1,
|
||
learning_rate=0.1,
|
||
reg_lambda=1.0,
|
||
reg_alpha=0.0,
|
||
colsample_bylevel=1.0,
|
||
colsample_bytree=1.0,
|
||
tree_method="hist",
|
||
**params,
|
||
):
|
||
super().__init__(task, **params)
|
||
del self.params["objective"]
|
||
del self.params["max_bin"]
|
||
del self.params["verbose"]
|
||
self.params.update(
|
||
{
|
||
"n_estimators": int(round(n_estimators)),
|
||
"max_leaves": int(round(max_leaves)),
|
||
"max_depth": 0,
|
||
"grow_policy": params.get("grow_policy", "lossguide"),
|
||
"tree_method": tree_method,
|
||
"n_jobs": n_jobs,
|
||
"verbosity": 0,
|
||
"learning_rate": float(learning_rate),
|
||
"subsample": float(subsample),
|
||
"reg_alpha": float(reg_alpha),
|
||
"reg_lambda": float(reg_lambda),
|
||
"min_child_weight": float(min_child_weight),
|
||
"booster": params.get("booster", "gbtree"),
|
||
"colsample_bylevel": float(colsample_bylevel),
|
||
"colsample_bytree": float(colsample_bytree),
|
||
"use_label_encoder": params.get("use_label_encoder", False),
|
||
}
|
||
)
|
||
|
||
self.estimator_class = xgb.XGBRegressor
|
||
if "rank" == task:
|
||
self.estimator_class = xgb.XGBRanker
|
||
elif task in ("binary", "multi"):
|
||
self.estimator_class = xgb.XGBClassifier
|
||
self._time_per_iter = None
|
||
self._train_size = 0
|
||
|
||
def fit(self, X_train, y_train, budget=None, **kwargs):
|
||
if issparse(X_train):
|
||
self.params["tree_method"] = "auto"
|
||
return super().fit(X_train, y_train, budget, **kwargs)
|
||
|
||
|
||
class RandomForestEstimator(SKLearnEstimator, LGBMEstimator):
|
||
@classmethod
|
||
def search_space(cls, data_size, task, **params):
|
||
data_size = int(data_size)
|
||
upper = min(2048, data_size)
|
||
space = {
|
||
"n_estimators": {
|
||
"domain": tune.lograndint(lower=4, upper=upper),
|
||
"init_value": 4,
|
||
"low_cost_init_value": 4,
|
||
},
|
||
"max_features": {
|
||
"domain": tune.loguniform(lower=0.1, upper=1.0),
|
||
"init_value": 1.0,
|
||
},
|
||
"max_leaves": {
|
||
"domain": tune.lograndint(lower=4, upper=min(32768, data_size)),
|
||
"init_value": 4,
|
||
"low_cost_init_value": 4,
|
||
},
|
||
}
|
||
if task in ("binary", "multi"):
|
||
space["criterion"] = {
|
||
"domain": tune.choice(["gini", "entropy"]),
|
||
# 'init_value': 'gini',
|
||
}
|
||
return space
|
||
|
||
@classmethod
|
||
def cost_relative2lgbm(cls):
|
||
return 2.0
|
||
|
||
def __init__(
|
||
self,
|
||
task="binary",
|
||
n_jobs=1,
|
||
n_estimators=4,
|
||
max_features=1.0,
|
||
criterion="gini",
|
||
max_leaves=4,
|
||
**params,
|
||
):
|
||
super().__init__(task, **params)
|
||
del self.params["objective"]
|
||
del self.params["max_bin"]
|
||
self.params.update(
|
||
{
|
||
"n_estimators": int(round(n_estimators)),
|
||
"n_jobs": n_jobs,
|
||
"verbose": 0,
|
||
"max_features": float(max_features),
|
||
"max_leaf_nodes": params.get("max_leaf_nodes", int(round(max_leaves))),
|
||
}
|
||
)
|
||
self.estimator_class = RandomForestRegressor
|
||
if task in ("binary", "multi"):
|
||
self.estimator_class = RandomForestClassifier
|
||
self.params["criterion"] = criterion
|
||
|
||
def get_params(self, deep=False):
|
||
params = super().get_params()
|
||
return params
|
||
|
||
|
||
class ExtraTreeEstimator(RandomForestEstimator):
|
||
@classmethod
|
||
def cost_relative2lgbm(cls):
|
||
return 1.9
|
||
|
||
def __init__(self, task="binary", **params):
|
||
super().__init__(task, **params)
|
||
if "regression" in task:
|
||
self.estimator_class = ExtraTreesRegressor
|
||
else:
|
||
self.estimator_class = ExtraTreesClassifier
|
||
|
||
|
||
class LRL1Classifier(SKLearnEstimator):
|
||
@classmethod
|
||
def search_space(cls, **params):
|
||
return {
|
||
"C": {
|
||
"domain": tune.loguniform(lower=0.03125, upper=32768.0),
|
||
"init_value": 1.0,
|
||
},
|
||
}
|
||
|
||
@classmethod
|
||
def cost_relative2lgbm(cls):
|
||
return 160
|
||
|
||
def __init__(self, task="binary", n_jobs=1, tol=0.0001, C=1.0, **params):
|
||
super().__init__(task, **params)
|
||
self.params.update(
|
||
{
|
||
"penalty": params.get("penalty", "l1"),
|
||
"tol": float(tol),
|
||
"C": float(C),
|
||
"solver": params.get("solver", "saga"),
|
||
"n_jobs": n_jobs,
|
||
}
|
||
)
|
||
assert task in (
|
||
"binary",
|
||
"multi",
|
||
), "LogisticRegression for classification task only"
|
||
self.estimator_class = LogisticRegression
|
||
|
||
|
||
class LRL2Classifier(SKLearnEstimator):
|
||
@classmethod
|
||
def search_space(cls, **params):
|
||
return LRL1Classifier.search_space(**params)
|
||
|
||
@classmethod
|
||
def cost_relative2lgbm(cls):
|
||
return 25
|
||
|
||
def __init__(self, task="binary", n_jobs=1, tol=0.0001, C=1.0, **params):
|
||
super().__init__(task, **params)
|
||
self.params.update(
|
||
{
|
||
"penalty": params.get("penalty", "l2"),
|
||
"tol": float(tol),
|
||
"C": float(C),
|
||
"solver": params.get("solver", "lbfgs"),
|
||
"n_jobs": n_jobs,
|
||
}
|
||
)
|
||
assert task in (
|
||
"binary",
|
||
"multi",
|
||
), "LogisticRegression for classification task only"
|
||
self.estimator_class = LogisticRegression
|
||
|
||
|
||
class CatBoostEstimator(BaseEstimator):
|
||
_time_per_iter = None
|
||
_train_size = 0
|
||
|
||
@classmethod
|
||
def search_space(cls, data_size, **params):
|
||
upper = max(min(round(1500000 / data_size), 150), 12)
|
||
return {
|
||
"early_stopping_rounds": {
|
||
"domain": tune.lograndint(lower=10, upper=upper),
|
||
"init_value": 10,
|
||
"low_cost_init_value": 10,
|
||
},
|
||
"learning_rate": {
|
||
"domain": tune.loguniform(lower=0.005, upper=0.2),
|
||
"init_value": 0.1,
|
||
},
|
||
}
|
||
|
||
@classmethod
|
||
def size(cls, config):
|
||
n_estimators = 8192
|
||
max_leaves = 64
|
||
return (max_leaves * 3 + (max_leaves - 1) * 4 + 1.0) * n_estimators * 8
|
||
|
||
@classmethod
|
||
def cost_relative2lgbm(cls):
|
||
return 15
|
||
|
||
@classmethod
|
||
def init(cls):
|
||
CatBoostEstimator._time_per_iter = None
|
||
CatBoostEstimator._train_size = 0
|
||
|
||
def _preprocess(self, X):
|
||
if isinstance(X, pd.DataFrame):
|
||
cat_columns = X.select_dtypes(include=["category"]).columns
|
||
if not cat_columns.empty:
|
||
X = X.copy()
|
||
X[cat_columns] = X[cat_columns].apply(
|
||
lambda x: x.cat.rename_categories(
|
||
[
|
||
str(c) if isinstance(c, float) else c
|
||
for c in x.cat.categories
|
||
]
|
||
)
|
||
)
|
||
elif isinstance(X, np.ndarray) and X.dtype.kind not in "buif":
|
||
# numpy array is not of numeric dtype
|
||
X = pd.DataFrame(X)
|
||
for col in X.columns:
|
||
if isinstance(X[col][0], str):
|
||
X[col] = X[col].astype("category").cat.codes
|
||
X = X.to_numpy()
|
||
return X
|
||
|
||
def __init__(
|
||
self,
|
||
task="binary",
|
||
n_jobs=1,
|
||
n_estimators=8192,
|
||
learning_rate=0.1,
|
||
early_stopping_rounds=4,
|
||
**params,
|
||
):
|
||
super().__init__(task, **params)
|
||
self.params.update(
|
||
{
|
||
"early_stopping_rounds": int(round(early_stopping_rounds)),
|
||
"n_estimators": n_estimators,
|
||
"learning_rate": learning_rate,
|
||
"thread_count": n_jobs,
|
||
"verbose": params.get("verbose", False),
|
||
"random_seed": params.get("random_seed", 10242048),
|
||
}
|
||
)
|
||
from catboost import CatBoostRegressor
|
||
|
||
self.estimator_class = CatBoostRegressor
|
||
if task in ("binary", "multi"):
|
||
from catboost import CatBoostClassifier
|
||
|
||
self.estimator_class = CatBoostClassifier
|
||
|
||
def get_params(self, deep=False):
|
||
params = super().get_params()
|
||
params["n_jobs"] = params["thread_count"]
|
||
return params
|
||
|
||
def fit(self, X_train, y_train, budget=None, **kwargs):
|
||
import shutil
|
||
|
||
start_time = time.time()
|
||
train_dir = f"catboost_{str(start_time)}"
|
||
n_iter = self.params["n_estimators"]
|
||
X_train = self._preprocess(X_train)
|
||
if isinstance(X_train, pd.DataFrame):
|
||
cat_features = list(X_train.select_dtypes(include="category").columns)
|
||
else:
|
||
cat_features = []
|
||
# from catboost import CatBoostError
|
||
# try:
|
||
if (
|
||
not CatBoostEstimator._time_per_iter
|
||
or abs(CatBoostEstimator._train_size - len(y_train)) > 4
|
||
) and budget:
|
||
# measure the time per iteration
|
||
self.params["n_estimators"] = 1
|
||
CatBoostEstimator._smallmodel = self.estimator_class(
|
||
train_dir=train_dir, **self.params
|
||
)
|
||
CatBoostEstimator._smallmodel.fit(
|
||
X_train, y_train, cat_features=cat_features, **kwargs
|
||
)
|
||
CatBoostEstimator._t1 = time.time() - start_time
|
||
if CatBoostEstimator._t1 >= budget:
|
||
self.params["n_estimators"] = n_iter
|
||
self._model = CatBoostEstimator._smallmodel
|
||
shutil.rmtree(train_dir, ignore_errors=True)
|
||
return CatBoostEstimator._t1
|
||
self.params["n_estimators"] = 4
|
||
CatBoostEstimator._smallmodel = self.estimator_class(
|
||
train_dir=train_dir, **self.params
|
||
)
|
||
CatBoostEstimator._smallmodel.fit(
|
||
X_train, y_train, cat_features=cat_features, **kwargs
|
||
)
|
||
CatBoostEstimator._time_per_iter = (
|
||
time.time() - start_time - CatBoostEstimator._t1
|
||
) / (self.params["n_estimators"] - 1)
|
||
if CatBoostEstimator._time_per_iter <= 0:
|
||
CatBoostEstimator._time_per_iter = CatBoostEstimator._t1
|
||
CatBoostEstimator._train_size = len(y_train)
|
||
if (
|
||
time.time() - start_time >= budget
|
||
or n_iter == self.params["n_estimators"]
|
||
):
|
||
self.params["n_estimators"] = n_iter
|
||
self._model = CatBoostEstimator._smallmodel
|
||
shutil.rmtree(train_dir, ignore_errors=True)
|
||
return time.time() - start_time
|
||
if budget:
|
||
train_times = 1
|
||
self.params["n_estimators"] = min(
|
||
n_iter,
|
||
int(
|
||
(budget - time.time() + start_time - CatBoostEstimator._t1)
|
||
/ train_times
|
||
/ CatBoostEstimator._time_per_iter
|
||
+ 1
|
||
),
|
||
)
|
||
self._model = CatBoostEstimator._smallmodel
|
||
if self.params["n_estimators"] > 0:
|
||
n = max(int(len(y_train) * 0.9), len(y_train) - 1000)
|
||
X_tr, y_tr = X_train[:n], y_train[:n]
|
||
if "sample_weight" in kwargs:
|
||
weight = kwargs["sample_weight"]
|
||
if weight is not None:
|
||
kwargs["sample_weight"] = weight[:n]
|
||
else:
|
||
weight = None
|
||
from catboost import Pool
|
||
|
||
model = self.estimator_class(train_dir=train_dir, **self.params)
|
||
model.fit(
|
||
X_tr,
|
||
y_tr,
|
||
cat_features=cat_features,
|
||
eval_set=Pool(
|
||
data=X_train[n:], label=y_train[n:], cat_features=cat_features
|
||
),
|
||
**kwargs,
|
||
) # model.get_best_iteration()
|
||
shutil.rmtree(train_dir, ignore_errors=True)
|
||
if weight is not None:
|
||
kwargs["sample_weight"] = weight
|
||
self._model = model
|
||
# except CatBoostError:
|
||
# self._model = None
|
||
self.params["n_estimators"] = n_iter
|
||
train_time = time.time() - start_time
|
||
return train_time
|
||
|
||
|
||
class KNeighborsEstimator(BaseEstimator):
|
||
@classmethod
|
||
def search_space(cls, data_size, **params):
|
||
upper = min(512, int(data_size / 2))
|
||
return {
|
||
"n_neighbors": {
|
||
"domain": tune.lograndint(lower=1, upper=upper),
|
||
"init_value": 5,
|
||
"low_cost_init_value": 1,
|
||
},
|
||
}
|
||
|
||
@classmethod
|
||
def cost_relative2lgbm(cls):
|
||
return 30
|
||
|
||
def __init__(self, task="binary", n_jobs=1, n_neighbors=5, **params):
|
||
super().__init__(task, **params)
|
||
self.params.update(
|
||
{
|
||
"n_neighbors": int(round(n_neighbors)),
|
||
"weights": params.get("weights", "distance"),
|
||
"n_jobs": n_jobs,
|
||
}
|
||
)
|
||
from sklearn.neighbors import KNeighborsRegressor
|
||
|
||
self.estimator_class = KNeighborsRegressor
|
||
if task in ("binary", "multi"):
|
||
from sklearn.neighbors import KNeighborsClassifier
|
||
|
||
self.estimator_class = KNeighborsClassifier
|
||
|
||
def _preprocess(self, X):
|
||
if isinstance(X, pd.DataFrame):
|
||
cat_columns = X.select_dtypes(["category"]).columns
|
||
if X.shape[1] == len(cat_columns):
|
||
raise ValueError("kneighbor requires at least one numeric feature")
|
||
X = X.drop(cat_columns, axis=1)
|
||
elif isinstance(X, np.ndarray) and X.dtype.kind not in "buif":
|
||
# drop categocial columns if any
|
||
X = pd.DataFrame(X)
|
||
cat_columns = []
|
||
for col in X.columns:
|
||
if isinstance(X[col][0], str):
|
||
cat_columns.append(col)
|
||
X = X.drop(cat_columns, axis=1)
|
||
X = X.to_numpy()
|
||
return X
|
||
|
||
|
||
class Prophet(BaseEstimator):
|
||
@classmethod
|
||
def search_space(cls, **params):
|
||
space = {
|
||
"changepoint_prior_scale": {
|
||
"domain": tune.loguniform(lower=0.001, upper=1000),
|
||
"init_value": 0.01,
|
||
"low_cost_init_value": 0.001,
|
||
},
|
||
"seasonality_prior_scale": {
|
||
"domain": tune.loguniform(lower=0.01, upper=100),
|
||
"init_value": 1,
|
||
},
|
||
"holidays_prior_scale": {
|
||
"domain": tune.loguniform(lower=0.01, upper=100),
|
||
"init_value": 1,
|
||
},
|
||
"seasonality_mode": {
|
||
"domain": tune.choice(["additive", "multiplicative"]),
|
||
"init_value": "multiplicative",
|
||
},
|
||
}
|
||
return space
|
||
|
||
def __init__(self, task="forecast", **params):
|
||
if "n_jobs" in params:
|
||
params.pop("n_jobs")
|
||
super().__init__(task, **params)
|
||
|
||
def _join(self, X_train, y_train):
|
||
assert "ds" in X_train, (
|
||
"Dataframe for training forecast model must have column"
|
||
' "ds" with the dates in X_train.'
|
||
)
|
||
y_train = pd.DataFrame(y_train, columns=["y"])
|
||
train_df = X_train.join(y_train)
|
||
return train_df
|
||
|
||
def fit(self, X_train, y_train, budget=None, **kwargs):
|
||
from prophet import Prophet
|
||
|
||
current_time = time.time()
|
||
train_df = self._join(X_train, y_train)
|
||
model = Prophet(**self.params).fit(train_df)
|
||
train_time = time.time() - current_time
|
||
self._model = model
|
||
return train_time
|
||
|
||
def predict(self, X_test):
|
||
if isinstance(X_test, int):
|
||
raise ValueError(
|
||
"predict() with steps is only supported for arima/sarimax."
|
||
" For Prophet, pass a dataframe with a date colum named ds."
|
||
)
|
||
if self._model is not None:
|
||
forecast = self._model.predict(X_test)
|
||
return forecast["yhat"]
|
||
else:
|
||
logger.warning(
|
||
"Estimator is not fit yet. Please run fit() before predict()."
|
||
)
|
||
return np.ones(X_test.shape[0])
|
||
|
||
|
||
class ARIMA(Prophet):
|
||
@classmethod
|
||
def search_space(cls, **params):
|
||
space = {
|
||
"p": {
|
||
"domain": tune.quniform(lower=0, upper=10, q=1),
|
||
"init_value": 2,
|
||
"low_cost_init_value": 0,
|
||
},
|
||
"d": {
|
||
"domain": tune.quniform(lower=0, upper=10, q=1),
|
||
"init_value": 2,
|
||
"low_cost_init_value": 0,
|
||
},
|
||
"q": {
|
||
"domain": tune.quniform(lower=0, upper=10, q=1),
|
||
"init_value": 2,
|
||
"low_cost_init_value": 0,
|
||
},
|
||
}
|
||
return space
|
||
|
||
def _join(self, X_train, y_train):
|
||
train_df = super()._join(X_train, y_train)
|
||
train_df.index = pd.to_datetime(train_df["ds"])
|
||
train_df = train_df.drop("ds", axis=1)
|
||
return train_df
|
||
|
||
def fit(self, X_train, y_train, budget=None, **kwargs):
|
||
import warnings
|
||
|
||
warnings.filterwarnings("ignore")
|
||
from statsmodels.tsa.arima.model import ARIMA as ARIMA_estimator
|
||
|
||
current_time = time.time()
|
||
train_df = self._join(X_train, y_train)
|
||
model = ARIMA_estimator(
|
||
train_df,
|
||
order=(self.params["p"], self.params["d"], self.params["q"]),
|
||
enforce_stationarity=False,
|
||
enforce_invertibility=False,
|
||
)
|
||
model = model.fit()
|
||
train_time = time.time() - current_time
|
||
self._model = model
|
||
return train_time
|
||
|
||
def predict(self, X_test):
|
||
if self._model is not None:
|
||
if isinstance(X_test, int):
|
||
forecast = self._model.forecast(steps=X_test)
|
||
elif isinstance(X_test, pd.DataFrame):
|
||
start = X_test.iloc[0, 0]
|
||
end = X_test.iloc[-1, 0]
|
||
forecast = self._model.predict(start=start, end=end)
|
||
else:
|
||
raise ValueError(
|
||
"X_test needs to be either a pd.Dataframe with dates as column ds)"
|
||
" or an int number of periods for predict()."
|
||
)
|
||
return forecast
|
||
else:
|
||
return np.ones(X_test if isinstance(X_test, int) else X_test.shape[0])
|
||
|
||
|
||
class SARIMAX(ARIMA):
|
||
@classmethod
|
||
def search_space(cls, **params):
|
||
space = {
|
||
"p": {
|
||
"domain": tune.quniform(lower=0, upper=10, q=1),
|
||
"init_value": 2,
|
||
"low_cost_init_value": 0,
|
||
},
|
||
"d": {
|
||
"domain": tune.quniform(lower=0, upper=10, q=1),
|
||
"init_value": 2,
|
||
"low_cost_init_value": 0,
|
||
},
|
||
"q": {
|
||
"domain": tune.quniform(lower=0, upper=10, q=1),
|
||
"init_value": 2,
|
||
"low_cost_init_value": 0,
|
||
},
|
||
"P": {
|
||
"domain": tune.quniform(lower=0, upper=10, q=1),
|
||
"init_value": 1,
|
||
"low_cost_init_value": 0,
|
||
},
|
||
"D": {
|
||
"domain": tune.quniform(lower=0, upper=10, q=1),
|
||
"init_value": 1,
|
||
"low_cost_init_value": 0,
|
||
},
|
||
"Q": {
|
||
"domain": tune.quniform(lower=0, upper=10, q=1),
|
||
"init_value": 1,
|
||
"low_cost_init_value": 0,
|
||
},
|
||
"s": {
|
||
"domain": tune.choice([1, 4, 6, 12]),
|
||
"init_value": 12,
|
||
},
|
||
}
|
||
return space
|
||
|
||
def fit(self, X_train, y_train, budget=None, **kwargs):
|
||
from statsmodels.tsa.statespace.sarimax import SARIMAX as SARIMAX_estimator
|
||
|
||
current_time = time.time()
|
||
train_df = self._join(X_train, y_train)
|
||
model = SARIMAX_estimator(
|
||
train_df,
|
||
order=(self.params["p"], self.params["d"], self.params["q"]),
|
||
seasonality_order=(
|
||
self.params["P"],
|
||
self.params["D"],
|
||
self.params["Q"],
|
||
self.params["s"],
|
||
),
|
||
enforce_stationarity=False,
|
||
enforce_invertibility=False,
|
||
)
|
||
model = model.fit()
|
||
train_time = time.time() - current_time
|
||
self._model = model
|
||
return train_time
|