mirror of
https://github.com/microsoft/autogen.git
synced 2025-09-11 17:26:02 +00:00

* Refactor into automl subpackage Moved some of the packages into an automl subpackage to tidy before the task-based refactor. This is in response to discussions with the group and a comment on the first task-based PR. Only changes here are moving subpackages and modules into the new automl, fixing imports to work with this structure and fixing some dependencies in setup.py. * Fix doc building post automl subpackage refactor * Fix broken links in website post automl subpackage refactor * Fix broken links in website post automl subpackage refactor * Remove vw from test deps as this is breaking the build * Move default back to the top-level I'd moved this to automl as that's where it's used internally, but had missed that this is actually part of the public interface so makes sense to live where it was. * Re-add top level modules with deprecation warnings flaml.data, flaml.ml and flaml.model are re-added to the top level, being re-exported from flaml.automl for backwards compatability. Adding a deprecation warning so that we can have a planned removal later. * Fix model.py line-endings * Pin pytorch-lightning to less than 1.8.0 We're seeing strange lightning related bugs from pytorch-forecasting since the release of lightning 1.8.0. Going to try constraining this to see if we have a fix. * Fix the lightning version pin Was optimistic with setting it in the 1.7.x range, but that isn't compatible with python 3.6 * Remove lightning version pin * Revert dependency version changes * Minor change to retrigger the build * Fix line endings in ml.py and model.py Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu> Co-authored-by: EgorKraevTransferwise <egor.kraev@transferwise.com>
545 lines
20 KiB
Python
545 lines
20 KiB
Python
import unittest
|
|
import numpy as np
|
|
import scipy.sparse
|
|
from sklearn.datasets import load_iris, load_wine
|
|
from flaml import AutoML
|
|
from flaml.automl.data import CLASSIFICATION, get_output_from_log
|
|
from flaml.automl.model import LGBMEstimator, XGBoostSklearnEstimator, SKLearnEstimator
|
|
from flaml import tune
|
|
from flaml.automl.training_log import training_log_reader
|
|
|
|
|
|
class MyRegularizedGreedyForest(SKLearnEstimator):
|
|
def __init__(self, task="binary", **config):
|
|
|
|
super().__init__(task, **config)
|
|
|
|
if task in CLASSIFICATION:
|
|
from rgf.sklearn import RGFClassifier
|
|
|
|
self.estimator_class = RGFClassifier
|
|
else:
|
|
from rgf.sklearn import RGFRegressor
|
|
|
|
self.estimator_class = RGFRegressor
|
|
|
|
@classmethod
|
|
def search_space(cls, data_size, task):
|
|
space = {
|
|
"max_leaf": {
|
|
"domain": tune.lograndint(lower=4, upper=data_size[0]),
|
|
"init_value": 4,
|
|
},
|
|
"n_iter": {
|
|
"domain": tune.lograndint(lower=1, upper=data_size[0]),
|
|
"init_value": 1,
|
|
},
|
|
"n_tree_search": {
|
|
"domain": tune.lograndint(lower=1, upper=32768),
|
|
"init_value": 1,
|
|
},
|
|
"opt_interval": {
|
|
"domain": tune.lograndint(lower=1, upper=10000),
|
|
"init_value": 100,
|
|
},
|
|
"learning_rate": {"domain": tune.loguniform(lower=0.01, upper=20.0)},
|
|
"min_samples_leaf": {
|
|
"domain": tune.lograndint(lower=1, upper=20),
|
|
"init_value": 20,
|
|
},
|
|
}
|
|
return space
|
|
|
|
@classmethod
|
|
def size(cls, config):
|
|
max_leaves = int(round(config.get("max_leaf", 1)))
|
|
n_estimators = int(round(config.get("n_iter", 1)))
|
|
return (max_leaves * 3 + (max_leaves - 1) * 4 + 1.0) * n_estimators * 8
|
|
|
|
@classmethod
|
|
def cost_relative2lgbm(cls):
|
|
return 1.0
|
|
|
|
|
|
class MyLargeXGB(XGBoostSklearnEstimator):
|
|
@classmethod
|
|
def search_space(cls, **params):
|
|
return {
|
|
"n_estimators": {
|
|
"domain": tune.lograndint(lower=4, upper=32768),
|
|
"init_value": 32768,
|
|
"low_cost_init_value": 4,
|
|
},
|
|
"max_leaves": {
|
|
"domain": tune.lograndint(lower=4, upper=3276),
|
|
"init_value": 3276,
|
|
"low_cost_init_value": 4,
|
|
},
|
|
}
|
|
|
|
|
|
class MyLargeLGBM(LGBMEstimator):
|
|
@classmethod
|
|
def search_space(cls, **params):
|
|
return {
|
|
"n_estimators": {
|
|
"domain": tune.lograndint(lower=4, upper=32768),
|
|
"init_value": 32768,
|
|
"low_cost_init_value": 4,
|
|
},
|
|
"num_leaves": {
|
|
"domain": tune.lograndint(lower=4, upper=3276),
|
|
"init_value": 3276,
|
|
"low_cost_init_value": 4,
|
|
},
|
|
}
|
|
|
|
|
|
def custom_metric(
|
|
X_val,
|
|
y_val,
|
|
estimator,
|
|
labels,
|
|
X_train,
|
|
y_train,
|
|
weight_val=None,
|
|
weight_train=None,
|
|
config=None,
|
|
groups_val=None,
|
|
groups_train=None,
|
|
):
|
|
from sklearn.metrics import log_loss
|
|
import time
|
|
|
|
start = time.time()
|
|
y_pred = estimator.predict_proba(X_val)
|
|
pred_time = (time.time() - start) / len(X_val)
|
|
val_loss = log_loss(y_val, y_pred, labels=labels, sample_weight=weight_val)
|
|
y_pred = estimator.predict_proba(X_train)
|
|
train_loss = log_loss(y_train, y_pred, labels=labels, sample_weight=weight_train)
|
|
alpha = 0.5
|
|
return val_loss * (1 + alpha) - alpha * train_loss, {
|
|
"val_loss": val_loss,
|
|
"train_loss": train_loss,
|
|
"pred_time": pred_time,
|
|
}
|
|
|
|
|
|
class TestMultiClass(unittest.TestCase):
|
|
def test_custom_learner(self):
|
|
automl = AutoML()
|
|
automl.add_learner(learner_name="RGF", learner_class=MyRegularizedGreedyForest)
|
|
X_train, y_train = load_wine(return_X_y=True)
|
|
settings = {
|
|
"time_budget": 8, # total running time in seconds
|
|
"estimator_list": ["RGF", "lgbm", "rf", "xgboost"],
|
|
"task": "classification", # task type
|
|
"sample": True, # whether to subsample training data
|
|
"log_file_name": "test/wine.log",
|
|
"log_training_metric": True, # whether to log training metric
|
|
"n_jobs": 1,
|
|
}
|
|
automl.fit(X_train=X_train, y_train=y_train, **settings)
|
|
# print the best model found for RGF
|
|
print(automl.best_model_for_estimator("RGF"))
|
|
|
|
MyRegularizedGreedyForest.search_space = lambda data_size, task: {}
|
|
automl.fit(X_train=X_train, y_train=y_train, **settings)
|
|
|
|
def test_ensemble(self):
|
|
automl = AutoML()
|
|
automl.add_learner(learner_name="RGF", learner_class=MyRegularizedGreedyForest)
|
|
X_train, y_train = load_wine(return_X_y=True)
|
|
settings = {
|
|
"time_budget": 5, # total running time in seconds
|
|
"estimator_list": ["rf", "xgboost", "catboost"],
|
|
"task": "classification", # task type
|
|
"sample": True, # whether to subsample training data
|
|
"log_file_name": "test/wine.log",
|
|
"log_training_metric": True, # whether to log training metric
|
|
"ensemble": {
|
|
"final_estimator": MyRegularizedGreedyForest(),
|
|
"passthrough": False,
|
|
},
|
|
"n_jobs": 1,
|
|
}
|
|
automl.fit(X_train=X_train, y_train=y_train, **settings)
|
|
|
|
def test_dataframe(self):
|
|
self.test_classification(True)
|
|
|
|
def test_custom_metric(self):
|
|
df, y = load_iris(return_X_y=True, as_frame=True)
|
|
df["label"] = y
|
|
automl_experiment = AutoML()
|
|
automl_settings = {
|
|
"dataframe": df,
|
|
"label": "label",
|
|
"time_budget": 5,
|
|
"eval_method": "cv",
|
|
"metric": custom_metric,
|
|
"task": "classification",
|
|
"log_file_name": "test/iris_custom.log",
|
|
"log_training_metric": True,
|
|
"log_type": "all",
|
|
"n_jobs": 1,
|
|
"model_history": True,
|
|
"sample_weight": np.ones(len(y)),
|
|
"pred_time_limit": 1e-5,
|
|
"ensemble": True,
|
|
}
|
|
automl_experiment.fit(**automl_settings)
|
|
print(automl_experiment.classes_)
|
|
print(automl_experiment.model)
|
|
print(automl_experiment.config_history)
|
|
print(automl_experiment.best_model_for_estimator("rf"))
|
|
print(automl_experiment.best_iteration)
|
|
print(automl_experiment.best_estimator)
|
|
automl_experiment = AutoML()
|
|
estimator = automl_experiment.get_estimator_from_log(
|
|
automl_settings["log_file_name"], record_id=0, task="multiclass"
|
|
)
|
|
print(estimator)
|
|
(
|
|
time_history,
|
|
best_valid_loss_history,
|
|
valid_loss_history,
|
|
config_history,
|
|
metric_history,
|
|
) = get_output_from_log(
|
|
filename=automl_settings["log_file_name"], time_budget=6
|
|
)
|
|
print(metric_history)
|
|
try:
|
|
import ray
|
|
|
|
df = ray.put(df)
|
|
automl_settings["dataframe"] = df
|
|
automl_settings["use_ray"] = True
|
|
automl_experiment.fit(**automl_settings)
|
|
except ImportError:
|
|
pass
|
|
|
|
def test_classification(self, as_frame=False):
|
|
automl_experiment = AutoML()
|
|
automl_settings = {
|
|
"time_budget": 4,
|
|
"metric": "accuracy",
|
|
"task": "classification",
|
|
"log_file_name": "test/iris.log",
|
|
"log_training_metric": True,
|
|
"n_jobs": 1,
|
|
"model_history": True,
|
|
}
|
|
X_train, y_train = load_iris(return_X_y=True, as_frame=as_frame)
|
|
if as_frame:
|
|
# test drop column
|
|
X_train.columns = range(X_train.shape[1])
|
|
X_train[X_train.shape[1]] = np.zeros(len(y_train))
|
|
automl_experiment.fit(X_train=X_train, y_train=y_train, **automl_settings)
|
|
print(automl_experiment.classes_)
|
|
print(automl_experiment.predict(X_train)[:5])
|
|
print(automl_experiment.model)
|
|
print(automl_experiment.config_history)
|
|
print(automl_experiment.best_model_for_estimator("catboost"))
|
|
print(automl_experiment.best_iteration)
|
|
print(automl_experiment.best_estimator)
|
|
del automl_settings["metric"]
|
|
del automl_settings["model_history"]
|
|
del automl_settings["log_training_metric"]
|
|
automl_experiment = AutoML(task="classification")
|
|
duration = automl_experiment.retrain_from_log(
|
|
log_file_name=automl_settings["log_file_name"],
|
|
X_train=X_train,
|
|
y_train=y_train,
|
|
train_full=True,
|
|
record_id=0,
|
|
)
|
|
print(duration)
|
|
print(automl_experiment.model)
|
|
print(automl_experiment.predict_proba(X_train)[:5])
|
|
|
|
def test_micro_macro_f1(self):
|
|
automl_experiment_micro = AutoML()
|
|
automl_experiment_macro = AutoML()
|
|
automl_settings = {
|
|
"time_budget": 2,
|
|
"task": "classification",
|
|
"log_file_name": "test/micro_macro_f1.log",
|
|
"log_training_metric": True,
|
|
"n_jobs": 1,
|
|
"model_history": True,
|
|
}
|
|
X_train, y_train = load_iris(return_X_y=True)
|
|
automl_experiment_micro.fit(
|
|
X_train=X_train, y_train=y_train, metric="micro_f1", **automl_settings
|
|
)
|
|
automl_experiment_macro.fit(
|
|
X_train=X_train, y_train=y_train, metric="macro_f1", **automl_settings
|
|
)
|
|
estimator = automl_experiment_macro.model
|
|
y_pred = estimator.predict(X_train)
|
|
y_pred_proba = estimator.predict_proba(X_train)
|
|
from flaml.automl.ml import norm_confusion_matrix, multi_class_curves
|
|
|
|
print(norm_confusion_matrix(y_train, y_pred))
|
|
from sklearn.metrics import roc_curve, precision_recall_curve
|
|
|
|
print(multi_class_curves(y_train, y_pred_proba, roc_curve))
|
|
print(multi_class_curves(y_train, y_pred_proba, precision_recall_curve))
|
|
|
|
def test_roc_auc_ovr(self):
|
|
automl_experiment = AutoML()
|
|
X_train, y_train = load_iris(return_X_y=True)
|
|
automl_settings = {
|
|
"time_budget": 1,
|
|
"metric": "roc_auc_ovr",
|
|
"task": "classification",
|
|
"log_file_name": "test/roc_auc_ovr.log",
|
|
"log_training_metric": True,
|
|
"n_jobs": 1,
|
|
"sample_weight": np.ones(len(y_train)),
|
|
"eval_method": "holdout",
|
|
"model_history": True,
|
|
}
|
|
automl_experiment.fit(X_train=X_train, y_train=y_train, **automl_settings)
|
|
|
|
def test_roc_auc_ovo(self):
|
|
automl_experiment = AutoML()
|
|
automl_settings = {
|
|
"time_budget": 1,
|
|
"metric": "roc_auc_ovo",
|
|
"task": "classification",
|
|
"log_file_name": "test/roc_auc_ovo.log",
|
|
"log_training_metric": True,
|
|
"n_jobs": 1,
|
|
"model_history": True,
|
|
}
|
|
X_train, y_train = load_iris(return_X_y=True)
|
|
automl_experiment.fit(X_train=X_train, y_train=y_train, **automl_settings)
|
|
|
|
def test_roc_auc_ovr_weighted(self):
|
|
automl_experiment = AutoML()
|
|
automl_settings = {
|
|
"time_budget": 1,
|
|
"metric": "roc_auc_ovr_weighted",
|
|
"task": "classification",
|
|
"log_file_name": "test/roc_auc_weighted.log",
|
|
"log_training_metric": True,
|
|
"n_jobs": 1,
|
|
"model_history": True,
|
|
}
|
|
X_train, y_train = load_iris(return_X_y=True)
|
|
automl_experiment.fit(X_train=X_train, y_train=y_train, **automl_settings)
|
|
|
|
def test_roc_auc_ovo_weighted(self):
|
|
automl_experiment = AutoML()
|
|
automl_settings = {
|
|
"time_budget": 1,
|
|
"metric": "roc_auc_ovo_weighted",
|
|
"task": "classification",
|
|
"log_file_name": "test/roc_auc_weighted.log",
|
|
"log_training_metric": True,
|
|
"n_jobs": 1,
|
|
"model_history": True,
|
|
}
|
|
X_train, y_train = load_iris(return_X_y=True)
|
|
automl_experiment.fit(X_train=X_train, y_train=y_train, **automl_settings)
|
|
|
|
def test_sparse_matrix_classification(self):
|
|
automl_experiment = AutoML()
|
|
automl_settings = {
|
|
"time_budget": 2,
|
|
"metric": "auto",
|
|
"task": "classification",
|
|
"log_file_name": "test/sparse_classification.log",
|
|
"split_type": "uniform",
|
|
"n_jobs": 1,
|
|
"model_history": True,
|
|
}
|
|
X_train = scipy.sparse.random(1554, 21, dtype=int)
|
|
y_train = np.random.randint(3, size=1554)
|
|
automl_experiment.fit(X_train=X_train, y_train=y_train, **automl_settings)
|
|
print(automl_experiment.classes_)
|
|
print(automl_experiment.predict_proba(X_train))
|
|
print(automl_experiment.model)
|
|
print(automl_experiment.config_history)
|
|
print(automl_experiment.best_model_for_estimator("extra_tree"))
|
|
print(automl_experiment.best_iteration)
|
|
print(automl_experiment.best_estimator)
|
|
|
|
def _test_memory_limit(self):
|
|
automl_experiment = AutoML()
|
|
automl_experiment.add_learner(
|
|
learner_name="large_lgbm", learner_class=MyLargeLGBM
|
|
)
|
|
automl_settings = {
|
|
"time_budget": -1,
|
|
"task": "classification",
|
|
"log_file_name": "test/classification_oom.log",
|
|
"estimator_list": ["large_lgbm"],
|
|
"log_type": "all",
|
|
"hpo_method": "random",
|
|
"free_mem_ratio": 0.2,
|
|
}
|
|
X_train, y_train = load_iris(return_X_y=True, as_frame=True)
|
|
|
|
automl_experiment.fit(
|
|
X_train=X_train, y_train=y_train, max_iter=1, **automl_settings
|
|
)
|
|
print(automl_experiment.model)
|
|
|
|
def test_time_limit(self):
|
|
automl_experiment = AutoML()
|
|
automl_experiment.add_learner(
|
|
learner_name="large_lgbm", learner_class=MyLargeLGBM
|
|
)
|
|
automl_experiment.add_learner(
|
|
learner_name="large_xgb", learner_class=MyLargeXGB
|
|
)
|
|
automl_settings = {
|
|
"time_budget": 0.5,
|
|
"task": "classification",
|
|
"log_file_name": "test/classification_timeout.log",
|
|
"estimator_list": ["catboost"],
|
|
"log_type": "all",
|
|
"hpo_method": "random",
|
|
}
|
|
X_train, y_train = load_iris(return_X_y=True, as_frame=True)
|
|
automl_experiment.fit(X_train=X_train, y_train=y_train, **automl_settings)
|
|
print(automl_experiment.model.params)
|
|
automl_settings["estimator_list"] = ["large_xgb"]
|
|
automl_experiment.fit(X_train=X_train, y_train=y_train, **automl_settings)
|
|
print(automl_experiment.model)
|
|
automl_settings["estimator_list"] = ["large_lgbm"]
|
|
automl_experiment.fit(X_train=X_train, y_train=y_train, **automl_settings)
|
|
print(automl_experiment.model)
|
|
|
|
def test_fit_w_starting_point(self, as_frame=True):
|
|
automl_experiment = AutoML()
|
|
automl_settings = {
|
|
"time_budget": 3,
|
|
"metric": "accuracy",
|
|
"task": "classification",
|
|
"log_file_name": "test/iris.log",
|
|
"log_training_metric": True,
|
|
"n_jobs": 1,
|
|
"model_history": True,
|
|
}
|
|
X_train, y_train = load_iris(return_X_y=True, as_frame=as_frame)
|
|
if as_frame:
|
|
# test drop column
|
|
X_train.columns = range(X_train.shape[1])
|
|
X_train[X_train.shape[1]] = np.zeros(len(y_train))
|
|
automl_experiment.fit(X_train=X_train, y_train=y_train, **automl_settings)
|
|
automl_val_accuracy = 1.0 - automl_experiment.best_loss
|
|
print("Best ML leaner:", automl_experiment.best_estimator)
|
|
print("Best hyperparmeter config:", automl_experiment.best_config)
|
|
print("Best accuracy on validation data: {0:.4g}".format(automl_val_accuracy))
|
|
print(
|
|
"Training duration of best run: {0:.4g} s".format(
|
|
automl_experiment.best_config_train_time
|
|
)
|
|
)
|
|
|
|
starting_points = automl_experiment.best_config_per_estimator
|
|
print("starting_points", starting_points)
|
|
print("loss of the starting_points", automl_experiment.best_loss_per_estimator)
|
|
automl_settings_resume = {
|
|
"time_budget": 2,
|
|
"metric": "accuracy",
|
|
"task": "classification",
|
|
"log_file_name": "test/iris_resume.log",
|
|
"log_training_metric": True,
|
|
"n_jobs": 1,
|
|
"model_history": True,
|
|
"log_type": "all",
|
|
"starting_points": starting_points,
|
|
}
|
|
new_automl_experiment = AutoML()
|
|
new_automl_experiment.fit(
|
|
X_train=X_train, y_train=y_train, **automl_settings_resume
|
|
)
|
|
|
|
new_automl_val_accuracy = 1.0 - new_automl_experiment.best_loss
|
|
print("Best ML leaner:", new_automl_experiment.best_estimator)
|
|
print("Best hyperparmeter config:", new_automl_experiment.best_config)
|
|
print(
|
|
"Best accuracy on validation data: {0:.4g}".format(new_automl_val_accuracy)
|
|
)
|
|
print(
|
|
"Training duration of best run: {0:.4g} s".format(
|
|
new_automl_experiment.best_config_train_time
|
|
)
|
|
)
|
|
|
|
def test_fit_w_starting_points_list(self, as_frame=True):
|
|
automl_experiment = AutoML()
|
|
automl_settings = {
|
|
"time_budget": 3,
|
|
"metric": "accuracy",
|
|
"task": "classification",
|
|
"log_file_name": "test/iris.log",
|
|
"log_training_metric": True,
|
|
"n_jobs": 1,
|
|
"model_history": True,
|
|
}
|
|
X_train, y_train = load_iris(return_X_y=True, as_frame=as_frame)
|
|
if as_frame:
|
|
# test drop column
|
|
X_train.columns = range(X_train.shape[1])
|
|
X_train[X_train.shape[1]] = np.zeros(len(y_train))
|
|
automl_experiment.fit(X_train=X_train, y_train=y_train, **automl_settings)
|
|
automl_val_accuracy = 1.0 - automl_experiment.best_loss
|
|
print("Best ML leaner:", automl_experiment.best_estimator)
|
|
print("Best hyperparmeter config:", automl_experiment.best_config)
|
|
print("Best accuracy on validation data: {0:.4g}".format(automl_val_accuracy))
|
|
print(
|
|
"Training duration of best run: {0:.4g} s".format(
|
|
automl_experiment.best_config_train_time
|
|
)
|
|
)
|
|
|
|
starting_points = {}
|
|
log_file_name = automl_settings["log_file_name"]
|
|
with training_log_reader(log_file_name) as reader:
|
|
sample_size = 1000
|
|
for record in reader.records():
|
|
config = record.config
|
|
config["FLAML_sample_size"] = sample_size
|
|
sample_size += 1000
|
|
learner = record.learner
|
|
if learner not in starting_points:
|
|
starting_points[learner] = []
|
|
starting_points[learner].append(config)
|
|
max_iter = sum([len(s) for k, s in starting_points.items()])
|
|
automl_settings_resume = {
|
|
"time_budget": 2,
|
|
"metric": "accuracy",
|
|
"task": "classification",
|
|
"log_file_name": "test/iris_resume_all.log",
|
|
"log_training_metric": True,
|
|
"n_jobs": 1,
|
|
"max_iter": max_iter,
|
|
"model_history": True,
|
|
"log_type": "all",
|
|
"starting_points": starting_points,
|
|
"append_log": True,
|
|
}
|
|
new_automl_experiment = AutoML()
|
|
new_automl_experiment.fit(
|
|
X_train=X_train, y_train=y_train, **automl_settings_resume
|
|
)
|
|
|
|
new_automl_val_accuracy = 1.0 - new_automl_experiment.best_loss
|
|
# print('Best ML leaner:', new_automl_experiment.best_estimator)
|
|
# print('Best hyperparmeter config:', new_automl_experiment.best_config)
|
|
print(
|
|
"Best accuracy on validation data: {0:.4g}".format(new_automl_val_accuracy)
|
|
)
|
|
# print('Training duration of best run: {0:.4g} s'.format(new_automl_experiment.best_config_train_time))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|