autogen/test/agentchat/contrib/test_llava.py
Gunnar Kudrjavets f68c09b035
Validate the OpenAI API key format (#1635)
* Validate the OpenAI API key format

Increase the amount of internal validation for OpenAI API keys. The intent is
to shorten the debugging loop in case of typos. The changes do *not* add
validation for Azure OpenAI API keys.

* Add the validation in `__init__` of `OpenAIClient`.

* Introduce the `MOCK_OPEN_AI_API_KEY` constant for testing.

*  Add unit test coverage for the `is_valid_api_key` function.

* Validate the OpenAI API key format

Increase the amount of internal validation for OpenAI API keys. The intent is
to shorten the debugging loop in case of typos. The changes do *not* add
validation for Azure OpenAI API keys.

* Add the validation in `__init__` of `OpenAIClient`.

* Introduce the `MOCK_OPEN_AI_API_KEY` constant for testing.

*Add unit test coverage for the `is_valid_api_key` function.

* Log a warning when register a default client fails.

* Validate the OpenAI API key format

Increase the amount of internal validation for OpenAI API keys. The intent is
to shorten the debugging loop in case of typos. The changes do *not* add
validation for Azure OpenAI API keys.

* Add the validation in `__init__` of `OpenAIClient`. We'll log a
  warning when the OpenAI API key isn't valid.

* Introduce the `MOCK_OPEN_AI_API_KEY` constant for testing.

* Add unit test coverage for the `is_valid_api_key` function.

* Check for OpenAI base_url before API key validation

---------

Co-authored-by: Chi Wang <wang.chi@microsoft.com>
2024-02-14 18:51:38 +00:00

132 lines
4.1 KiB
Python

import unittest
from unittest.mock import MagicMock, patch
import pytest
import autogen
from conftest import MOCK_OPEN_AI_API_KEY
try:
from autogen.agentchat.contrib.llava_agent import (
LLaVAAgent,
_llava_call_binary_with_config,
llava_call,
llava_call_binary,
)
except ImportError:
skip = True
else:
skip = False
@pytest.mark.skipif(skip, reason="dependency is not installed")
class TestLLaVAAgent(unittest.TestCase):
def setUp(self):
self.agent = LLaVAAgent(
name="TestAgent",
llm_config={
"timeout": 600,
"seed": 42,
"config_list": [{"model": "llava-fake", "base_url": "localhost:8000", "api_key": MOCK_OPEN_AI_API_KEY}],
},
)
def test_init(self):
self.assertIsInstance(self.agent, LLaVAAgent)
@pytest.mark.skipif(skip, reason="dependency is not installed")
class TestLLavaCallBinaryWithConfig(unittest.TestCase):
@patch("requests.post")
def test_local_mode(self, mock_post):
# Mocking the response of requests.post
mock_response = MagicMock()
mock_response.iter_lines.return_value = [b'{"text":"response text"}']
mock_post.return_value = mock_response
# Calling the function
output = _llava_call_binary_with_config(
prompt="Test Prompt",
images=[],
config={"base_url": "http://0.0.0.0/api", "model": "test-model"},
max_new_tokens=1000,
temperature=0.5,
seed=1,
)
# Verifying the results
self.assertEqual(output, "response text")
mock_post.assert_called_once_with(
"http://0.0.0.0/api/worker_generate_stream",
headers={"User-Agent": "LLaVA Client"},
json={
"model": "test-model",
"prompt": "Test Prompt",
"max_new_tokens": 1000,
"temperature": 0.5,
"stop": "###",
"images": [],
},
stream=False,
)
@patch("replicate.run")
def test_remote_mode(self, mock_run):
# Mocking the response of replicate.run
mock_run.return_value = iter(["response ", "text"])
# Calling the function
output = _llava_call_binary_with_config(
prompt="Test Prompt",
images=["image_data"],
config={"base_url": "http://remote/api", "model": "test-model"},
max_new_tokens=1000,
temperature=0.5,
seed=1,
)
# Verifying the results
self.assertEqual(output, "response text")
mock_run.assert_called_once_with(
"http://remote/api",
input={"image": "_data", "prompt": "Test Prompt", "seed": 1},
)
@pytest.mark.skipif(skip, reason="dependency is not installed")
class TestLLavaCall(unittest.TestCase):
@patch("autogen.agentchat.contrib.llava_agent.llava_formatter")
@patch("autogen.agentchat.contrib.llava_agent.llava_call_binary")
def test_llava_call(self, mock_llava_call_binary, mock_llava_formatter):
# Set up the mocks
mock_llava_formatter.return_value = ("formatted prompt", ["image1", "image2"])
mock_llava_call_binary.return_value = "Generated Text"
# Set up the llm_config dictionary
llm_config = {
"config_list": [{"api_key": MOCK_OPEN_AI_API_KEY, "base_url": "localhost:8000"}],
"max_new_tokens": 2000,
"temperature": 0.5,
"seed": 1,
}
# Call the function
result = llava_call("Test Prompt", llm_config)
# Check the results
mock_llava_formatter.assert_called_once_with("Test Prompt", order_image_tokens=False)
mock_llava_call_binary.assert_called_once_with(
"formatted prompt",
["image1", "image2"],
config_list=llm_config["config_list"],
max_new_tokens=2000,
temperature=0.5,
seed=1,
)
self.assertEqual(result, "Generated Text")
if __name__ == "__main__":
unittest.main()