mirror of
https://github.com/microsoft/autogen.git
synced 2025-08-04 23:02:09 +00:00

* Validate the OpenAI API key format Increase the amount of internal validation for OpenAI API keys. The intent is to shorten the debugging loop in case of typos. The changes do *not* add validation for Azure OpenAI API keys. * Add the validation in `__init__` of `OpenAIClient`. * Introduce the `MOCK_OPEN_AI_API_KEY` constant for testing. * Add unit test coverage for the `is_valid_api_key` function. * Validate the OpenAI API key format Increase the amount of internal validation for OpenAI API keys. The intent is to shorten the debugging loop in case of typos. The changes do *not* add validation for Azure OpenAI API keys. * Add the validation in `__init__` of `OpenAIClient`. * Introduce the `MOCK_OPEN_AI_API_KEY` constant for testing. *Add unit test coverage for the `is_valid_api_key` function. * Log a warning when register a default client fails. * Validate the OpenAI API key format Increase the amount of internal validation for OpenAI API keys. The intent is to shorten the debugging loop in case of typos. The changes do *not* add validation for Azure OpenAI API keys. * Add the validation in `__init__` of `OpenAIClient`. We'll log a warning when the OpenAI API key isn't valid. * Introduce the `MOCK_OPEN_AI_API_KEY` constant for testing. * Add unit test coverage for the `is_valid_api_key` function. * Check for OpenAI base_url before API key validation --------- Co-authored-by: Chi Wang <wang.chi@microsoft.com>
132 lines
4.1 KiB
Python
132 lines
4.1 KiB
Python
import unittest
|
|
from unittest.mock import MagicMock, patch
|
|
|
|
import pytest
|
|
|
|
import autogen
|
|
|
|
from conftest import MOCK_OPEN_AI_API_KEY
|
|
|
|
try:
|
|
from autogen.agentchat.contrib.llava_agent import (
|
|
LLaVAAgent,
|
|
_llava_call_binary_with_config,
|
|
llava_call,
|
|
llava_call_binary,
|
|
)
|
|
except ImportError:
|
|
skip = True
|
|
else:
|
|
skip = False
|
|
|
|
|
|
@pytest.mark.skipif(skip, reason="dependency is not installed")
|
|
class TestLLaVAAgent(unittest.TestCase):
|
|
def setUp(self):
|
|
self.agent = LLaVAAgent(
|
|
name="TestAgent",
|
|
llm_config={
|
|
"timeout": 600,
|
|
"seed": 42,
|
|
"config_list": [{"model": "llava-fake", "base_url": "localhost:8000", "api_key": MOCK_OPEN_AI_API_KEY}],
|
|
},
|
|
)
|
|
|
|
def test_init(self):
|
|
self.assertIsInstance(self.agent, LLaVAAgent)
|
|
|
|
|
|
@pytest.mark.skipif(skip, reason="dependency is not installed")
|
|
class TestLLavaCallBinaryWithConfig(unittest.TestCase):
|
|
@patch("requests.post")
|
|
def test_local_mode(self, mock_post):
|
|
# Mocking the response of requests.post
|
|
mock_response = MagicMock()
|
|
mock_response.iter_lines.return_value = [b'{"text":"response text"}']
|
|
mock_post.return_value = mock_response
|
|
|
|
# Calling the function
|
|
output = _llava_call_binary_with_config(
|
|
prompt="Test Prompt",
|
|
images=[],
|
|
config={"base_url": "http://0.0.0.0/api", "model": "test-model"},
|
|
max_new_tokens=1000,
|
|
temperature=0.5,
|
|
seed=1,
|
|
)
|
|
|
|
# Verifying the results
|
|
self.assertEqual(output, "response text")
|
|
mock_post.assert_called_once_with(
|
|
"http://0.0.0.0/api/worker_generate_stream",
|
|
headers={"User-Agent": "LLaVA Client"},
|
|
json={
|
|
"model": "test-model",
|
|
"prompt": "Test Prompt",
|
|
"max_new_tokens": 1000,
|
|
"temperature": 0.5,
|
|
"stop": "###",
|
|
"images": [],
|
|
},
|
|
stream=False,
|
|
)
|
|
|
|
@patch("replicate.run")
|
|
def test_remote_mode(self, mock_run):
|
|
# Mocking the response of replicate.run
|
|
mock_run.return_value = iter(["response ", "text"])
|
|
|
|
# Calling the function
|
|
output = _llava_call_binary_with_config(
|
|
prompt="Test Prompt",
|
|
images=["image_data"],
|
|
config={"base_url": "http://remote/api", "model": "test-model"},
|
|
max_new_tokens=1000,
|
|
temperature=0.5,
|
|
seed=1,
|
|
)
|
|
|
|
# Verifying the results
|
|
self.assertEqual(output, "response text")
|
|
mock_run.assert_called_once_with(
|
|
"http://remote/api",
|
|
input={"image": "_data", "prompt": "Test Prompt", "seed": 1},
|
|
)
|
|
|
|
|
|
@pytest.mark.skipif(skip, reason="dependency is not installed")
|
|
class TestLLavaCall(unittest.TestCase):
|
|
@patch("autogen.agentchat.contrib.llava_agent.llava_formatter")
|
|
@patch("autogen.agentchat.contrib.llava_agent.llava_call_binary")
|
|
def test_llava_call(self, mock_llava_call_binary, mock_llava_formatter):
|
|
# Set up the mocks
|
|
mock_llava_formatter.return_value = ("formatted prompt", ["image1", "image2"])
|
|
mock_llava_call_binary.return_value = "Generated Text"
|
|
|
|
# Set up the llm_config dictionary
|
|
llm_config = {
|
|
"config_list": [{"api_key": MOCK_OPEN_AI_API_KEY, "base_url": "localhost:8000"}],
|
|
"max_new_tokens": 2000,
|
|
"temperature": 0.5,
|
|
"seed": 1,
|
|
}
|
|
|
|
# Call the function
|
|
result = llava_call("Test Prompt", llm_config)
|
|
|
|
# Check the results
|
|
mock_llava_formatter.assert_called_once_with("Test Prompt", order_image_tokens=False)
|
|
mock_llava_call_binary.assert_called_once_with(
|
|
"formatted prompt",
|
|
["image1", "image2"],
|
|
config_list=llm_config["config_list"],
|
|
max_new_tokens=2000,
|
|
temperature=0.5,
|
|
seed=1,
|
|
)
|
|
self.assertEqual(result, "Generated Text")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|