mirror of
https://github.com/microsoft/autogen.git
synced 2025-07-12 19:40:40 +00:00

## Why are these changes needed? This change addresses a compatibility issue when using Google Gemini models with AutoGen. Specifically, Gemini returns a 400 INVALID_ARGUMENT error when receiving a response with an empty "text" parameter. The root cause is that Gemini does not accept empty string values (e.g., "") as valid inputs in the history of the conversation. To fix this, if the content field is falsy (e.g., None, "", etc.), it is explicitly replaced with a single whitespace (" "), which prevents the Gemini model from rejecting the request. - **Gemini API compatibility:** Gemini models reject empty assistant messages (e.g., `""`), causing runtime errors. This PR ensures such messages are safely replaced with whitespace where appropriate. - **Avoiding regressions:** Applying the empty content workaround **only to Gemini**, and **only to valid message types**, avoids breaking OpenAI or other models. - **Reducing duplication:** Previously, message transformation logic was scattered and repeated across different message types and models. Modularizing this pipeline removes that redundancy. - **Improved maintainability:** With future model variants likely to introduce more constraints, this modular structure makes it easier to adapt transformations without writing ad-hoc code each time. - **Testing for correctness:** The new structure is verified with tests, ensuring the bug fix is effective and non-intrusive. ## Summary This PR introduces a **modular transformer pipeline** for message conversion and **fixes a Gemini-specific bug** related to empty assistant message content. ### Key Changes - **[Refactor]** Extracted message transformation logic into a unified pipeline to: - Reduce code duplication - Improve maintainability - Simplify debugging and extension for future model-specific logic - **[BugFix]** Gemini models do not accept empty assistant message content. - Introduced `_set_empty_to_whitespace` transformer to replace empty strings with `" "` only where needed - Applied it **only** to `"text"` and `"thought"` message types, not to `"tools"` to avoid serialization errors - **Improved structure for model-specific handling** - Transformer functions are now grouped and conditionally applied based on message type and model family - This design makes it easier to support future models or combinations (e.g., Gemini + R1) - **Test coverage added** - Added dedicated tests to verify that empty assistant content causes errors for Gemini - Ensured the fix resolves the issue without affecting OpenAI models --- ## Motivation Originally, Gemini-compatible endpoints would fail when receiving assistant messages with empty content (`""`). This issue required special handling without introducing brittle, ad-hoc patches. In addressing this, I also saw an opportunity to **modularize** the message transformation logic across models. This improves clarity, avoids duplication, and simplifies future adaptations (e.g., different constraints across model families). --- ## 📘 AutoGen Modular Message Transformer: Design & Usage Guide This document introduces the **new modular transformer system** used in AutoGen for converting `LLMMessage` instances to SDK-specific message formats (e.g., OpenAI-style `ChatCompletionMessageParam`). The design improves **reusability, extensibility**, and **maintainability** across different model families. --- ### 🚀 Overview Instead of scattering model-specific message conversion logic across the codebase, the new design introduces: - Modular transformer **functions** for each message type - Per-model **transformer maps** (e.g., for OpenAI-compatible models) - Optional **conditional transformers** for multimodal/text hybrid models - Clear separation between **message adaptation logic** and **SDK-specific builder** (e.g., `ChatCompletionUserMessageParam`) --- ### 🧱 1. Define Transform Functions Each transformer function takes: - `LLMMessage`: a structured AutoGen message - `context: dict`: metadata passed through the builder pipeline And returns: - A dictionary of keyword arguments for the target message constructor (e.g., `{"content": ..., "name": ..., "role": ...}`) ```python def _set_thought_as_content_gemini(message: LLMMessage, context: Dict[str, Any]) -> Dict[str, str | None]: assert isinstance(message, AssistantMessage) return {"content": message.thought or " "} ``` --- ### 🪢 2. Compose Transformer Pipelines Multiple transformer functions are composed into a pipeline using `build_transformer_func()`: ```python base_user_transformer_funcs: List[Callable[[LLMMessage, Dict[str, Any]], Dict[str, Any]]] = [ _assert_valid_name, _set_name, _set_role("user"), ] user_transformer = build_transformer_func( funcs=base_user_transformer_funcs, message_param_func=ChatCompletionUserMessageParam ) ``` - The `message_param_func` is the actual constructor for the target message class (usually from the SDK). - The pipeline is **ordered** — each function adds or overrides keys in the builder kwargs. --- ### 🗂️ 3. Register Transformer Map Each model family maintains a `TransformerMap`, which maps `LLMMessage` types to transformers: ```python __BASE_TRANSFORMER_MAP: TransformerMap = { SystemMessage: system_transformer, UserMessage: user_transformer, AssistantMessage: assistant_transformer, } register_transformer("openai", model_name_or_family, __BASE_TRANSFORMER_MAP) ``` - `"openai"` is currently required (as only OpenAI-compatible format is supported now). - Registration ensures AutoGen knows how to transform each message type for that model. --- ### 🔁 4. Conditional Transformers (Optional) When message construction depends on runtime conditions (e.g., `"text"` vs. `"multimodal"`), use: ```python conditional_transformer = build_conditional_transformer_func( funcs_map=user_transformer_funcs_claude, message_param_func_map=user_transformer_constructors, condition_func=user_condition, ) ``` Where: - `funcs_map`: maps condition label → list of transformer functions ```python user_transformer_funcs_claude = { "text": text_transformers + [_set_empty_to_whitespace], "multimodal": multimodal_transformers + [_set_empty_to_whitespace], } ``` - `message_param_func_map`: maps condition label → message builder ```python user_transformer_constructors = { "text": ChatCompletionUserMessageParam, "multimodal": ChatCompletionUserMessageParam, } ``` - `condition_func`: determines which transformer to apply at runtime ```python def user_condition(message: LLMMessage, context: Dict[str, Any]) -> str: if isinstance(message.content, str): return "text" return "multimodal" ``` --- ### 🧪 Example Flow ```python llm_message = AssistantMessage(name="a", thought="let’s go") model_family = "openai" model_name = "claude-3-opus" transformer = get_transformer(model_family, model_name, type(llm_message)) sdk_message = transformer(llm_message, context={}) ``` --- ### 🎯 Design Benefits | Feature | Benefit | |--------|---------| | 🧱 Function-based modular design | Easy to compose and test | | 🧩 Per-model registry | Clean separation across model families | | ⚖️ Conditional support | Allows multimodal / dynamic adaptation | | 🔄 Reuse-friendly | Shared logic (e.g., `_set_name`) is DRY | | 📦 SDK-specific | Keeps message adaptation aligned to builder interface | --- ### 🔮 Future Direction - Support more SDKs and formats by introducing new message_param_func - Global registry integration (currently `"openai"`-scoped) - Class-based transformer variant if complexity grows --- ## Related issue number Closes #5762 ## Checks - [ ] I've included any doc changes needed for <https://microsoft.github.io/autogen/>. See <https://github.com/microsoft/autogen/blob/main/CONTRIBUTING.md> to build and test documentation locally. - [x] I've added tests (if relevant) corresponding to the changes introduced in this PR. - [ v ] I've made sure all auto checks have passed. --------- Co-authored-by: Eric Zhu <ekzhu@users.noreply.github.com>
587 lines
21 KiB
Python
587 lines
21 KiB
Python
import asyncio
|
|
import logging
|
|
import os
|
|
from typing import List, Sequence
|
|
|
|
import pytest
|
|
from autogen_core import CancellationToken, FunctionCall
|
|
from autogen_core.models import (
|
|
AssistantMessage,
|
|
CreateResult,
|
|
FunctionExecutionResult,
|
|
FunctionExecutionResultMessage,
|
|
SystemMessage,
|
|
UserMessage,
|
|
)
|
|
from autogen_core.models._types import LLMMessage
|
|
from autogen_core.tools import FunctionTool
|
|
from autogen_ext.models.anthropic import AnthropicChatCompletionClient
|
|
|
|
|
|
def _pass_function(input: str) -> str:
|
|
"""Simple passthrough function."""
|
|
return f"Processed: {input}"
|
|
|
|
|
|
def _add_numbers(a: int, b: int) -> int:
|
|
"""Add two numbers together."""
|
|
return a + b
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_anthropic_serialization_api_key() -> None:
|
|
client = AnthropicChatCompletionClient(
|
|
model="claude-3-haiku-20240307", # Use haiku for faster/cheaper testing
|
|
api_key="sk-password",
|
|
temperature=0.0, # Added temperature param to test
|
|
stop_sequences=["STOP"], # Added stop sequence
|
|
)
|
|
assert client
|
|
config = client.dump_component()
|
|
assert config
|
|
assert "sk-password" not in str(config)
|
|
serialized_config = config.model_dump_json()
|
|
assert serialized_config
|
|
assert "sk-password" not in serialized_config
|
|
client2 = AnthropicChatCompletionClient.load_component(config)
|
|
assert client2
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_anthropic_basic_completion(caplog: pytest.LogCaptureFixture) -> None:
|
|
"""Test basic message completion with Claude."""
|
|
api_key = os.getenv("ANTHROPIC_API_KEY")
|
|
if not api_key:
|
|
pytest.skip("ANTHROPIC_API_KEY not found in environment variables")
|
|
|
|
client = AnthropicChatCompletionClient(
|
|
model="claude-3-haiku-20240307", # Use haiku for faster/cheaper testing
|
|
api_key=api_key,
|
|
temperature=0.0, # Added temperature param to test
|
|
stop_sequences=["STOP"], # Added stop sequence
|
|
)
|
|
|
|
# Test basic completion
|
|
with caplog.at_level(logging.INFO):
|
|
result = await client.create(
|
|
messages=[
|
|
SystemMessage(content="You are a helpful assistant."),
|
|
UserMessage(content="What's 2+2? Answer with just the number.", source="user"),
|
|
]
|
|
)
|
|
|
|
assert isinstance(result.content, str)
|
|
assert "4" in result.content
|
|
assert result.finish_reason == "stop"
|
|
assert "LLMCall" in caplog.text and result.content in caplog.text
|
|
|
|
# Test JSON output - add to existing test
|
|
json_result = await client.create(
|
|
messages=[
|
|
UserMessage(content="Return a JSON with key 'value' set to 42", source="user"),
|
|
],
|
|
json_output=True,
|
|
)
|
|
assert isinstance(json_result.content, str)
|
|
assert "42" in json_result.content
|
|
|
|
# Check usage tracking
|
|
usage = client.total_usage()
|
|
assert usage.prompt_tokens > 0
|
|
assert usage.completion_tokens > 0
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_anthropic_streaming(caplog: pytest.LogCaptureFixture) -> None:
|
|
"""Test streaming capabilities with Claude."""
|
|
api_key = os.getenv("ANTHROPIC_API_KEY")
|
|
if not api_key:
|
|
pytest.skip("ANTHROPIC_API_KEY not found in environment variables")
|
|
|
|
client = AnthropicChatCompletionClient(
|
|
model="claude-3-haiku-20240307",
|
|
api_key=api_key,
|
|
)
|
|
|
|
# Test streaming completion
|
|
chunks: List[str | CreateResult] = []
|
|
prompt = "Count from 1 to 5. Each number on its own line."
|
|
with caplog.at_level(logging.INFO):
|
|
async for chunk in client.create_stream(
|
|
messages=[
|
|
UserMessage(content=prompt, source="user"),
|
|
]
|
|
):
|
|
chunks.append(chunk)
|
|
# Verify we got multiple chunks
|
|
assert len(chunks) > 1
|
|
|
|
# Check final result
|
|
final_result = chunks[-1]
|
|
assert isinstance(final_result, CreateResult)
|
|
assert final_result.finish_reason == "stop"
|
|
|
|
assert "LLMStreamStart" in caplog.text
|
|
assert "LLMStreamEnd" in caplog.text
|
|
assert isinstance(final_result.content, str)
|
|
for i in range(1, 6):
|
|
assert str(i) in caplog.text
|
|
assert prompt in caplog.text
|
|
|
|
# Check content contains numbers 1-5
|
|
assert isinstance(final_result.content, str)
|
|
combined_content = final_result.content
|
|
for i in range(1, 6):
|
|
assert str(i) in combined_content
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_anthropic_tool_calling() -> None:
|
|
"""Test tool calling capabilities with Claude."""
|
|
api_key = os.getenv("ANTHROPIC_API_KEY")
|
|
if not api_key:
|
|
pytest.skip("ANTHROPIC_API_KEY not found in environment variables")
|
|
|
|
client = AnthropicChatCompletionClient(
|
|
model="claude-3-haiku-20240307",
|
|
api_key=api_key,
|
|
)
|
|
|
|
# Define tools
|
|
pass_tool = FunctionTool(_pass_function, description="Process input text", name="process_text")
|
|
add_tool = FunctionTool(_add_numbers, description="Add two numbers together", name="add_numbers")
|
|
|
|
# Test tool calling with instruction to use specific tool
|
|
messages: List[LLMMessage] = [
|
|
SystemMessage(content="Use the tools available to help the user."),
|
|
UserMessage(content="Process the text 'hello world' using the process_text tool.", source="user"),
|
|
]
|
|
|
|
result = await client.create(messages=messages, tools=[pass_tool, add_tool])
|
|
|
|
# Check that we got a tool call
|
|
assert isinstance(result.content, list)
|
|
assert len(result.content) >= 1
|
|
assert isinstance(result.content[0], FunctionCall)
|
|
|
|
# Check that the correct tool was called
|
|
function_call = result.content[0]
|
|
assert function_call.name == "process_text"
|
|
|
|
# Test tool response handling
|
|
messages.append(AssistantMessage(content=result.content, source="assistant"))
|
|
messages.append(
|
|
FunctionExecutionResultMessage(
|
|
content=[
|
|
FunctionExecutionResult(
|
|
content="Processed: hello world",
|
|
call_id=result.content[0].id,
|
|
is_error=False,
|
|
name=result.content[0].name,
|
|
)
|
|
]
|
|
)
|
|
)
|
|
|
|
# Get response after tool execution
|
|
after_tool_result = await client.create(messages=messages)
|
|
|
|
# Check we got a text response
|
|
assert isinstance(after_tool_result.content, str)
|
|
|
|
# Test multiple tool use
|
|
multi_tool_prompt: List[LLMMessage] = [
|
|
SystemMessage(content="Use the tools as needed to help the user."),
|
|
UserMessage(content="First process the text 'test' and then add 2 and 3.", source="user"),
|
|
]
|
|
|
|
multi_tool_result = await client.create(messages=multi_tool_prompt, tools=[pass_tool, add_tool])
|
|
|
|
# We just need to verify we get at least one tool call
|
|
assert isinstance(multi_tool_result.content, list)
|
|
assert len(multi_tool_result.content) > 0
|
|
assert isinstance(multi_tool_result.content[0], FunctionCall)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_anthropic_token_counting() -> None:
|
|
"""Test token counting functionality."""
|
|
api_key = os.getenv("ANTHROPIC_API_KEY")
|
|
if not api_key:
|
|
pytest.skip("ANTHROPIC_API_KEY not found in environment variables")
|
|
|
|
client = AnthropicChatCompletionClient(
|
|
model="claude-3-haiku-20240307",
|
|
api_key=api_key,
|
|
)
|
|
|
|
messages: Sequence[LLMMessage] = [
|
|
SystemMessage(content="You are a helpful assistant."),
|
|
UserMessage(content="Hello, how are you?", source="user"),
|
|
]
|
|
|
|
# Test token counting
|
|
num_tokens = client.count_tokens(messages)
|
|
assert num_tokens > 0
|
|
|
|
# Test remaining token calculation
|
|
remaining = client.remaining_tokens(messages)
|
|
assert remaining > 0
|
|
assert remaining < 200000 # Claude's max context
|
|
|
|
# Test token counting with tools
|
|
tools = [
|
|
FunctionTool(_pass_function, description="Process input text", name="process_text"),
|
|
FunctionTool(_add_numbers, description="Add two numbers together", name="add_numbers"),
|
|
]
|
|
tokens_with_tools = client.count_tokens(messages, tools=tools)
|
|
assert tokens_with_tools > num_tokens # Should be more tokens with tools
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_anthropic_cancellation() -> None:
|
|
"""Test cancellation of requests."""
|
|
api_key = os.getenv("ANTHROPIC_API_KEY")
|
|
if not api_key:
|
|
pytest.skip("ANTHROPIC_API_KEY not found in environment variables")
|
|
|
|
client = AnthropicChatCompletionClient(
|
|
model="claude-3-haiku-20240307",
|
|
api_key=api_key,
|
|
)
|
|
|
|
# Create a cancellation token
|
|
cancellation_token = CancellationToken()
|
|
|
|
# Schedule cancellation after a short delay
|
|
async def cancel_after_delay() -> None:
|
|
await asyncio.sleep(0.5) # Short delay
|
|
cancellation_token.cancel()
|
|
|
|
# Start task to cancel request
|
|
asyncio.create_task(cancel_after_delay())
|
|
|
|
# Create a request with long output
|
|
with pytest.raises(asyncio.CancelledError):
|
|
await client.create(
|
|
messages=[
|
|
UserMessage(content="Write a detailed 5-page essay on the history of computing.", source="user"),
|
|
],
|
|
cancellation_token=cancellation_token,
|
|
)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_anthropic_multimodal() -> None:
|
|
"""Test multimodal capabilities with Claude."""
|
|
api_key = os.getenv("ANTHROPIC_API_KEY")
|
|
if not api_key:
|
|
pytest.skip("ANTHROPIC_API_KEY not found in environment variables")
|
|
|
|
# Skip if PIL is not available
|
|
try:
|
|
from autogen_core import Image
|
|
from PIL import Image as PILImage
|
|
except ImportError:
|
|
pytest.skip("PIL or other dependencies not installed")
|
|
|
|
client = AnthropicChatCompletionClient(
|
|
model="claude-3-5-sonnet-latest", # Use a model that supports vision
|
|
api_key=api_key,
|
|
)
|
|
|
|
# Use a simple test image that's reliable
|
|
# 1. Create a simple colored square image
|
|
width, height = 100, 100
|
|
color = (255, 0, 0) # Red
|
|
pil_image = PILImage.new("RGB", (width, height), color)
|
|
|
|
# 2. Convert to autogen_core Image format
|
|
img = Image(pil_image)
|
|
|
|
# Test multimodal message
|
|
result = await client.create(
|
|
messages=[
|
|
UserMessage(content=["What color is this square? Answer in one word.", img], source="user"),
|
|
]
|
|
)
|
|
|
|
# Verify we got a response describing the image
|
|
assert isinstance(result.content, str)
|
|
assert len(result.content) > 0
|
|
assert "red" in result.content.lower()
|
|
assert result.finish_reason == "stop"
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_anthropic_serialization() -> None:
|
|
"""Test serialization and deserialization of component."""
|
|
|
|
api_key = os.getenv("ANTHROPIC_API_KEY")
|
|
if not api_key:
|
|
pytest.skip("ANTHROPIC_API_KEY not found in environment variables")
|
|
|
|
client = AnthropicChatCompletionClient(
|
|
model="claude-3-haiku-20240307",
|
|
api_key=api_key,
|
|
)
|
|
|
|
# Serialize and deserialize
|
|
model_client_config = client.dump_component()
|
|
assert model_client_config is not None
|
|
assert model_client_config.config is not None
|
|
|
|
loaded_model_client = AnthropicChatCompletionClient.load_component(model_client_config)
|
|
assert loaded_model_client is not None
|
|
assert isinstance(loaded_model_client, AnthropicChatCompletionClient)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_anthropic_muliple_system_message() -> None:
|
|
"""Test multiple system messages in a single request."""
|
|
api_key = os.getenv("ANTHROPIC_API_KEY")
|
|
if not api_key:
|
|
pytest.skip("ANTHROPIC_API_KEY not found in environment variables")
|
|
|
|
client = AnthropicChatCompletionClient(
|
|
model="claude-3-haiku-20240307",
|
|
api_key=api_key,
|
|
)
|
|
|
|
# Test multiple system messages
|
|
messages: List[LLMMessage] = [
|
|
SystemMessage(content="When you say anything Start with 'FOO'"),
|
|
SystemMessage(content="When you say anything End with 'BAR'"),
|
|
UserMessage(content="Just say '.'", source="user"),
|
|
]
|
|
|
|
result = await client.create(messages=messages)
|
|
result_content = result.content
|
|
assert isinstance(result_content, str)
|
|
result_content = result_content.strip()
|
|
assert result_content[:3] == "FOO"
|
|
assert result_content[-3:] == "BAR"
|
|
|
|
|
|
def test_merge_continuous_system_messages() -> None:
|
|
"""Tests merging of continuous system messages."""
|
|
client = AnthropicChatCompletionClient(model="claude-3-haiku-20240307", api_key="fake-api-key")
|
|
|
|
messages: List[LLMMessage] = [
|
|
SystemMessage(content="System instruction 1"),
|
|
SystemMessage(content="System instruction 2"),
|
|
UserMessage(content="User question", source="user"),
|
|
]
|
|
|
|
merged_messages = client._merge_system_messages(messages) # pyright: ignore[reportPrivateUsage]
|
|
# The method is protected, but we need to test it
|
|
|
|
# 병합 후 2개 메시지만 남아야 함 (시스템 1개, 사용자 1개)
|
|
assert len(merged_messages) == 2
|
|
|
|
# 첫 번째 메시지는 병합된 시스템 메시지여야 함
|
|
assert isinstance(merged_messages[0], SystemMessage)
|
|
assert merged_messages[0].content == "System instruction 1\nSystem instruction 2"
|
|
|
|
# 두 번째 메시지는 사용자 메시지여야 함
|
|
assert isinstance(merged_messages[1], UserMessage)
|
|
assert merged_messages[1].content == "User question"
|
|
|
|
|
|
def test_merge_single_system_message() -> None:
|
|
"""Tests that a single system message remains unchanged."""
|
|
client = AnthropicChatCompletionClient(model="claude-3-haiku-20240307", api_key="fake-api-key")
|
|
|
|
messages: List[LLMMessage] = [
|
|
SystemMessage(content="Single system instruction"),
|
|
UserMessage(content="User question", source="user"),
|
|
]
|
|
|
|
merged_messages = client._merge_system_messages(messages) # pyright: ignore[reportPrivateUsage]
|
|
# The method is protected, but we need to test it
|
|
|
|
# 메시지 개수는 변하지 않아야 함
|
|
assert len(merged_messages) == 2
|
|
|
|
# 시스템 메시지 내용은 변하지 않아야 함
|
|
assert isinstance(merged_messages[0], SystemMessage)
|
|
assert merged_messages[0].content == "Single system instruction"
|
|
|
|
|
|
def test_merge_no_system_messages() -> None:
|
|
"""Tests behavior when there are no system messages."""
|
|
client = AnthropicChatCompletionClient(model="claude-3-haiku-20240307", api_key="fake-api-key")
|
|
|
|
messages: List[LLMMessage] = [
|
|
UserMessage(content="User question without system", source="user"),
|
|
]
|
|
|
|
merged_messages = client._merge_system_messages(messages) # pyright: ignore[reportPrivateUsage]
|
|
# The method is protected, but we need to test it
|
|
|
|
# 메시지 개수는 변하지 않아야 함
|
|
assert len(merged_messages) == 1
|
|
|
|
# 유일한 메시지는 사용자 메시지여야 함
|
|
assert isinstance(merged_messages[0], UserMessage)
|
|
assert merged_messages[0].content == "User question without system"
|
|
|
|
|
|
def test_merge_non_continuous_system_messages() -> None:
|
|
"""Tests that an error is raised for non-continuous system messages."""
|
|
client = AnthropicChatCompletionClient(model="claude-3-haiku-20240307", api_key="fake-api-key")
|
|
|
|
messages: List[LLMMessage] = [
|
|
SystemMessage(content="First group 1"),
|
|
SystemMessage(content="First group 2"),
|
|
UserMessage(content="Middle user message", source="user"),
|
|
SystemMessage(content="Second group 1"),
|
|
SystemMessage(content="Second group 2"),
|
|
]
|
|
|
|
# 연속적이지 않은 시스템 메시지는 에러를 발생시켜야 함
|
|
with pytest.raises(ValueError, match="Multiple and Not continuous system messages are not supported"):
|
|
client._merge_system_messages(messages) # pyright: ignore[reportPrivateUsage]
|
|
# The method is protected, but we need to test it
|
|
|
|
|
|
def test_merge_system_messages_empty() -> None:
|
|
"""Tests that empty message list is handled properly."""
|
|
client = AnthropicChatCompletionClient(model="claude-3-haiku-20240307", api_key="fake-api-key")
|
|
|
|
merged_messages = client._merge_system_messages([]) # pyright: ignore[reportPrivateUsage]
|
|
# The method is protected, but we need to test it
|
|
assert len(merged_messages) == 0
|
|
|
|
|
|
def test_merge_system_messages_with_special_characters() -> None:
|
|
"""Tests system message merging with special characters and formatting."""
|
|
client = AnthropicChatCompletionClient(model="claude-3-haiku-20240307", api_key="fake-api-key")
|
|
|
|
messages: List[LLMMessage] = [
|
|
SystemMessage(content="Line 1\nWith newline"),
|
|
SystemMessage(content="Line 2 with *formatting*"),
|
|
SystemMessage(content="Line 3 with `code`"),
|
|
UserMessage(content="Question", source="user"),
|
|
]
|
|
|
|
merged_messages = client._merge_system_messages(messages) # pyright: ignore[reportPrivateUsage]
|
|
# The method is protected, but we need to test it
|
|
assert len(merged_messages) == 2
|
|
|
|
system_message = merged_messages[0]
|
|
assert isinstance(system_message, SystemMessage)
|
|
assert system_message.content == "Line 1\nWith newline\nLine 2 with *formatting*\nLine 3 with `code`"
|
|
|
|
|
|
def test_merge_system_messages_with_whitespace() -> None:
|
|
"""Tests system message merging with extra whitespace."""
|
|
client = AnthropicChatCompletionClient(model="claude-3-haiku-20240307", api_key="fake-api-key")
|
|
|
|
messages: List[LLMMessage] = [
|
|
SystemMessage(content=" Message with leading spaces "),
|
|
SystemMessage(content="\nMessage with leading newline\n"),
|
|
UserMessage(content="Question", source="user"),
|
|
]
|
|
|
|
merged_messages = client._merge_system_messages(messages) # pyright: ignore[reportPrivateUsage]
|
|
# The method is protected, but we need to test it
|
|
assert len(merged_messages) == 2
|
|
|
|
system_message = merged_messages[0]
|
|
assert isinstance(system_message, SystemMessage)
|
|
# strip()은 내부에서 발생하지 않지만 최종 결과에서는 줄바꿈이 유지됨
|
|
assert system_message.content == " Message with leading spaces \n\nMessage with leading newline"
|
|
|
|
|
|
def test_merge_system_messages_message_order() -> None:
|
|
"""Tests that message order is preserved after merging."""
|
|
client = AnthropicChatCompletionClient(model="claude-3-haiku-20240307", api_key="fake-api-key")
|
|
|
|
messages: List[LLMMessage] = [
|
|
UserMessage(content="Question 1", source="user"),
|
|
SystemMessage(content="Instruction 1"),
|
|
SystemMessage(content="Instruction 2"),
|
|
UserMessage(content="Question 2", source="user"),
|
|
AssistantMessage(content="Answer", source="assistant"),
|
|
]
|
|
|
|
merged_messages = client._merge_system_messages(messages) # pyright: ignore[reportPrivateUsage]
|
|
# The method is protected, but we need to test it
|
|
assert len(merged_messages) == 4
|
|
|
|
# 첫 번째 메시지는 UserMessage여야 함
|
|
assert isinstance(merged_messages[0], UserMessage)
|
|
assert merged_messages[0].content == "Question 1"
|
|
|
|
# 두 번째 메시지는 병합된 SystemMessage여야 함
|
|
assert isinstance(merged_messages[1], SystemMessage)
|
|
assert merged_messages[1].content == "Instruction 1\nInstruction 2"
|
|
|
|
# 나머지 메시지는 순서대로 유지되어야 함
|
|
assert isinstance(merged_messages[2], UserMessage)
|
|
assert merged_messages[2].content == "Question 2"
|
|
assert isinstance(merged_messages[3], AssistantMessage)
|
|
assert merged_messages[3].content == "Answer"
|
|
|
|
|
|
def test_merge_system_messages_multiple_groups() -> None:
|
|
"""Tests that multiple separate groups of system messages raise an error."""
|
|
client = AnthropicChatCompletionClient(model="claude-3-haiku-20240307", api_key="fake-api-key")
|
|
|
|
# 연속되지 않은 시스템 메시지: 사용자 메시지로 분리된 두 그룹
|
|
messages: List[LLMMessage] = [
|
|
SystemMessage(content="Group 1 - message 1"),
|
|
UserMessage(content="Interrupting user message", source="user"),
|
|
SystemMessage(content="Group 2 - message 1"),
|
|
]
|
|
|
|
with pytest.raises(ValueError, match="Multiple and Not continuous system messages are not supported"):
|
|
client._merge_system_messages(messages) # pyright: ignore[reportPrivateUsage]
|
|
# The method is protected, but we need to test it
|
|
|
|
|
|
def test_merge_system_messages_no_duplicates() -> None:
|
|
"""Tests that identical system messages are still merged properly."""
|
|
client = AnthropicChatCompletionClient(model="claude-3-haiku-20240307", api_key="fake-api-key")
|
|
|
|
messages: List[LLMMessage] = [
|
|
SystemMessage(content="Same instruction"),
|
|
SystemMessage(content="Same instruction"), # 중복된 내용
|
|
UserMessage(content="Question", source="user"),
|
|
]
|
|
|
|
merged_messages = client._merge_system_messages(messages) # pyright: ignore[reportPrivateUsage]
|
|
# The method is protected, but we need to test it
|
|
assert len(merged_messages) == 2
|
|
|
|
# 첫 번째 메시지는 병합된 시스템 메시지여야 함
|
|
assert isinstance(merged_messages[0], SystemMessage)
|
|
# 중복된 내용도 그대로 병합됨
|
|
assert merged_messages[0].content == "Same instruction\nSame instruction"
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_empty_assistant_content_string_with_anthropic() -> None:
|
|
"""Test that an empty assistant content string is handled correctly."""
|
|
api_key = os.getenv("ANTHROPIC_API_KEY")
|
|
if not api_key:
|
|
pytest.skip("ANTHROPIC_API_KEY not found in environment variables")
|
|
|
|
client = AnthropicChatCompletionClient(
|
|
model="claude-3-haiku-20240307",
|
|
api_key=api_key,
|
|
)
|
|
|
|
# Test empty assistant content string
|
|
result = await client.create(
|
|
messages=[
|
|
UserMessage(content="Say something", source="user"),
|
|
AssistantMessage(content="", source="assistant"),
|
|
]
|
|
)
|
|
|
|
# Verify we got a response
|
|
assert isinstance(result.content, str)
|
|
assert len(result.content) > 0
|