autogen/flaml/automl.py
Chi Wang fc32eca24b
make default verbose level > 0 when using ray (#272)
* make default verbose level > 0 when using ray

* default hpo method when using ray

* bug fix: == -> =
2021-11-04 22:06:19 -07:00

2321 lines
97 KiB
Python

"""!
* Copyright (c) Microsoft Corporation. All rights reserved.
* Licensed under the MIT License. See LICENSE file in the
* project root for license information.
"""
import time
from typing import Callable, Optional
from functools import partial
import numpy as np
from scipy.sparse import issparse
from sklearn.model_selection import (
train_test_split,
RepeatedStratifiedKFold,
RepeatedKFold,
GroupKFold,
TimeSeriesSplit,
GroupShuffleSplit,
)
from sklearn.utils import shuffle
import pandas as pd
import logging
from .ml import (
compute_estimator,
train_estimator,
get_estimator_class,
get_classification_objective,
)
from .config import (
MIN_SAMPLE_TRAIN,
MEM_THRES,
RANDOM_SEED,
SMALL_LARGE_THRES,
CV_HOLDOUT_THRESHOLD,
SPLIT_RATIO,
N_SPLITS,
SAMPLE_MULTIPLY_FACTOR,
)
from .data import concat, CLASSIFICATION, TS_FORECAST, FORECAST
from . import tune
from .training_log import training_log_reader, training_log_writer
logger = logging.getLogger(__name__)
logger_formatter = logging.Formatter(
"[%(name)s: %(asctime)s] {%(lineno)d} %(levelname)s - %(message)s", "%m-%d %H:%M:%S"
)
try:
import mlflow
except ImportError:
mlflow = None
class SearchState:
@property
def search_space(self):
return self._search_space_domain
@property
def estimated_cost4improvement(self):
return max(
self.time_best_found - self.time_best_found_old,
self.total_time_used - self.time_best_found,
)
def __init__(self, learner_class, data_size, task, starting_point=None):
self.init_eci = learner_class.cost_relative2lgbm()
self._search_space_domain = {}
self.init_config = {}
self.low_cost_partial_config = {}
self.cat_hp_cost = {}
self.data_size = data_size
self.ls_ever_converged = False
self.learner_class = learner_class
search_space = learner_class.search_space(data_size=data_size, task=task)
for name, space in search_space.items():
assert "domain" in space
self._search_space_domain[name] = space["domain"]
if "init_value" in space:
self.init_config[name] = space["init_value"]
if "low_cost_init_value" in space:
self.low_cost_partial_config[name] = space["low_cost_init_value"]
if "cat_hp_cost" in space:
self.cat_hp_cost[name] = space["cat_hp_cost"]
# if a starting point is provided, set the init config to be
# the starting point provided
if (
isinstance(starting_point, dict)
and starting_point.get(name) is not None
):
self.init_config[name] = starting_point[name]
if isinstance(starting_point, list):
self.init_config = starting_point
self._hp_names = list(self._search_space_domain.keys())
self.search_alg = None
self.best_config = None
self.best_loss = self.best_loss_old = np.inf
self.total_time_used = 0
self.total_iter = 0
self.base_eci = None
self.time_best_found = 0
self.time2eval_best = 0
self.time2eval_best_old = 0
self.trained_estimator = None
self.sample_size = None
self.trial_time = 0
def update(self, result, time_used, save_model_history=False):
if result:
config = result["config"]
if config and "FLAML_sample_size" in config:
self.sample_size = config["FLAML_sample_size"]
else:
self.sample_size = self.data_size
obj = result["val_loss"]
metric_for_logging = result["metric_for_logging"]
time2eval = result["time_total_s"]
trained_estimator = result["trained_estimator"]
del result["trained_estimator"] # free up RAM
n_iter = trained_estimator and trained_estimator.params.get("n_estimators")
if n_iter is not None and "n_estimators" in config:
config["n_estimators"] = n_iter
else:
obj, time2eval, trained_estimator = np.inf, 0.0, None
metric_for_logging = config = None
self.trial_time = time2eval
self.total_time_used += time_used
self.total_iter += 1
if self.base_eci is None:
self.base_eci = time_used
if (obj is not None) and (self.best_loss is None or obj < self.best_loss):
self.best_loss_old = self.best_loss if self.best_loss < np.inf else 2 * obj
self.best_loss = obj
self.time_best_found_old = self.time_best_found
self.time_best_found = self.total_time_used
self.iter_best_found = self.total_iter
self.best_config = config
self.best_config_sample_size = self.sample_size
self.best_config_train_time = time_used
if time2eval:
self.time2eval_best_old = self.time2eval_best
self.time2eval_best = time2eval
if (
self.trained_estimator
and trained_estimator
and self.trained_estimator != trained_estimator
and not save_model_history
):
self.trained_estimator.cleanup()
if trained_estimator:
self.trained_estimator = trained_estimator
self.metric_for_logging = metric_for_logging
self.val_loss, self.config = obj, config
def get_hist_config_sig(self, sample_size, config):
config_values = tuple([config[k] for k in self._hp_names])
config_sig = str(sample_size) + "_" + str(config_values)
return config_sig
def est_retrain_time(self, retrain_sample_size):
assert (
self.best_config_sample_size is not None
), "need to first get best_config_sample_size"
return self.time2eval_best * retrain_sample_size / self.best_config_sample_size
class AutoMLState:
def _prepare_sample_train_data(self, sample_size):
sampled_weight = groups = None
if sample_size <= self.data_size:
if isinstance(self.X_train, pd.DataFrame):
sampled_X_train = self.X_train.iloc[:sample_size]
else:
sampled_X_train = self.X_train[:sample_size]
sampled_y_train = self.y_train[:sample_size]
weight = self.fit_kwargs.get("sample_weight")
if weight is not None:
sampled_weight = weight[:sample_size]
if self.groups is not None:
groups = self.groups[:sample_size]
else:
sampled_X_train = self.X_train_all
sampled_y_train = self.y_train_all
if "sample_weight" in self.fit_kwargs:
sampled_weight = self.sample_weight_all
if self.groups is not None:
groups = self.groups_all
return sampled_X_train, sampled_y_train, sampled_weight, groups
def _compute_with_config_base(self, estimator, config_w_resource):
if "FLAML_sample_size" in config_w_resource:
sample_size = int(config_w_resource["FLAML_sample_size"])
else:
sample_size = self.data_size
(
sampled_X_train,
sampled_y_train,
sampled_weight,
groups,
) = self._prepare_sample_train_data(sample_size)
if sampled_weight is not None:
weight = self.fit_kwargs["sample_weight"]
self.fit_kwargs["sample_weight"] = sampled_weight
else:
weight = None
if groups is not None:
self.fit_kwargs["groups"] = groups
config = config_w_resource.copy()
if "FLAML_sample_size" in config:
del config["FLAML_sample_size"]
time_left = self.time_budget - self.time_from_start
budget = (
time_left
if sample_size == self.data_size
else time_left / 2 * sample_size / self.data_size
)
(
trained_estimator,
val_loss,
metric_for_logging,
_,
pred_time,
) = compute_estimator(
sampled_X_train,
sampled_y_train,
self.X_val,
self.y_val,
self.weight_val,
self.groups_val,
min(budget, self.train_time_limit),
self.kf,
config,
self.task,
estimator,
self.eval_method,
self.metric,
self.best_loss,
self.n_jobs,
self.learner_classes.get(estimator),
self.log_training_metric,
self.fit_kwargs,
)
result = {
"pred_time": pred_time,
"wall_clock_time": time.time() - self._start_time_flag,
"metric_for_logging": metric_for_logging,
"val_loss": val_loss,
"trained_estimator": trained_estimator if self.save_model_history else None,
}
if sampled_weight is not None:
self.fit_kwargs["sample_weight"] = weight
return result
def _train_with_config(self, estimator, config_w_resource, sample_size=None):
if not sample_size:
sample_size = config_w_resource.get(
"FLAML_sample_size", len(self.y_train_all)
)
config = config_w_resource.get("ml", config_w_resource).copy()
if "FLAML_sample_size" in config:
del config["FLAML_sample_size"]
if "learner" in config:
del config["learner"]
(
sampled_X_train,
sampled_y_train,
sampled_weight,
groups,
) = self._prepare_sample_train_data(sample_size)
if sampled_weight is not None:
weight = self.fit_kwargs["sample_weight"]
self.fit_kwargs["sample_weight"] = sampled_weight
else:
weight = None
if groups is not None:
self.fit_kwargs["groups"] = groups
budget = (
None
if self.time_budget is None
else self.time_budget - self.time_from_start
)
estimator, train_time = train_estimator(
sampled_X_train,
sampled_y_train,
config,
self.task,
estimator,
self.n_jobs,
self.learner_classes.get(estimator),
budget,
self.fit_kwargs,
)
if sampled_weight is not None:
self.fit_kwargs["sample_weight"] = weight
return estimator, train_time
def size(state: AutoMLState, config: dict) -> float:
"""Size function
Returns:
The mem size in bytes for a config
"""
config = config.get("ml", config)
estimator = config["learner"]
learner_class = state.learner_classes.get(estimator)
return learner_class.size(config)
class AutoML:
"""The AutoML class
Example:
.. code-block:: python
automl = AutoML()
automl_settings = {
"time_budget": 60,
"metric": 'accuracy',
"task": 'classification',
"log_file_name": 'test/mylog.log',
}
automl.fit(X_train = X_train, y_train = y_train,
**automl_settings)
"""
from .version import __version__
def __init__(self):
self._track_iter = 0
self._state = AutoMLState()
self._state.learner_classes = {}
@property
def model_history(self):
"""A dictionary of iter->model, storing the models when
the best model is updated each time.
"""
return self._model_history
@property
def config_history(self):
"""A dictionary of iter->(estimator, config, time),
storing the best estimator, config, and the time when the best
model is updated each time.
"""
return self._config_history
@property
def model(self):
"""An object with `predict()` and `predict_proba()` method (for
classification), storing the best trained model.
"""
return self.__dict__.get("_trained_estimator")
def best_model_for_estimator(self, estimator_name):
"""Return the best model found for a particular estimator
Args:
estimator_name: a str of the estimator's name
Returns:
An object with `predict()` and `predict_proba()` method (for
classification), storing the best trained model for estimator_name.
"""
state = self._search_states.get(estimator_name)
return state and getattr(state, "trained_estimator", None)
@property
def best_estimator(self):
"""A string indicating the best estimator found."""
return self._best_estimator
@property
def best_iteration(self):
"""An integer of the iteration number where the best
config is found."""
return self._best_iteration
@property
def best_config(self):
"""A dictionary of the best configuration."""
state = self._search_states.get(self._best_estimator)
return state and getattr(state, "best_config", None)
@property
def best_config_per_estimator(self):
"""A dictionary of all estimators' best configuration."""
return {
e: e_search_state.best_config
for e, e_search_state in self._search_states.items()
}
@property
def best_loss(self):
"""A float of the best loss found"""
return self._state.best_loss
@property
def best_config_train_time(self):
"""A float of the seconds taken by training the best config."""
return getattr(
self._search_states[self._best_estimator], "best_config_train_time", None
)
@property
def classes_(self):
"""A list of n_classes elements for class labels."""
attr = getattr(self, "_label_transformer", None)
if attr:
return attr.classes_.tolist()
attr = getattr(self, "_trained_estimator", None)
if attr:
return attr.classes_.tolist()
return None
@property
def time_to_find_best_model(self) -> float:
"""Time taken to find best model in seconds"""
return self.__dict__.get("_time_taken_best_iter")
def predict(self, X_test):
"""Predict label from features.
Args:
X_test: A numpy array of featurized instances, shape n * m,
or for 'ts_forecast' task:
a pandas dataframe with the first column containing
timestamp values (datetime type) or an integer n for
the predict steps (only valid when the estimator is
arima or sarimax). Other columns in the dataframe
are assumed to be exogenous variables (categorical
or numeric).
.. code-block:: python
multivariate_X_test = pd.DataFrame({
'timeStamp': pd.date_range(start='1/1/2022', end='1/07/2022'),
'categorical_col': ['yes', 'yes', 'no', 'no', 'yes', 'no', 'yes'],
'continuous_col': [105, 107, 120, 118, 110, 112, 115]
})
model.predict(multivariate_X_test)
Returns:
A array-like of shape n * 1 - - each element is a predicted
label for an instance.
"""
estimator = getattr(self, "_trained_estimator", None)
if estimator is None:
logger.warning(
"No estimator is trained. Please run fit with enough budget."
)
return None
X_test = self._preprocess(X_test)
y_pred = estimator.predict(X_test)
if y_pred.ndim > 1 and isinstance(y_pred, np.ndarray):
y_pred = y_pred.flatten()
if self._label_transformer:
return self._label_transformer.inverse_transform(
pd.Series(y_pred.astype(int))
)
else:
return y_pred
def predict_proba(self, X_test):
"""Predict the probability of each class from features, only works for
classification problems.
Args:
X_test: A numpy array of featurized instances, shape n * m.
Returns:
A numpy array of shape n * c. c is the # classes. Each element at
(i, j) is the probability for instance i to be in class j.
"""
X_test = self._preprocess(X_test)
proba = self._trained_estimator.predict_proba(X_test)
return proba
def _preprocess(self, X):
if isinstance(X, int):
return X
if self._state.task == TS_FORECAST:
X = pd.DataFrame(X)
if issparse(X):
X = X.tocsr()
if self._transformer:
X = self._transformer.transform(X, self._state.task)
return X
def _validate_data(
self,
X_train_all,
y_train_all,
dataframe,
label,
X_val=None,
y_val=None,
groups_val=None,
groups=None,
):
if X_train_all is not None and y_train_all is not None:
assert (
isinstance(X_train_all, np.ndarray)
or issparse(X_train_all)
or isinstance(X_train_all, pd.DataFrame)
), (
"X_train_all must be a numpy array, a pandas dataframe, "
"or Scipy sparse matrix."
)
assert isinstance(y_train_all, np.ndarray) or isinstance(
y_train_all, pd.Series
), "y_train_all must be a numpy array or a pandas series."
assert (
X_train_all.size != 0 and y_train_all.size != 0
), "Input data must not be empty."
if isinstance(X_train_all, np.ndarray) and len(X_train_all.shape) == 1:
X_train_all = np.reshape(X_train_all, (X_train_all.size, 1))
if isinstance(y_train_all, np.ndarray):
y_train_all = y_train_all.flatten()
assert (
X_train_all.shape[0] == y_train_all.shape[0]
), "# rows in X_train must match length of y_train."
self._df = isinstance(X_train_all, pd.DataFrame)
self._nrow, self._ndim = X_train_all.shape
if self._state.task == TS_FORECAST:
X_train_all = pd.DataFrame(X_train_all)
assert (
X_train_all[X_train_all.columns[0]].dtype.name == "datetime64[ns]"
), f"For '{TS_FORECAST}' task, the first column must contain timestamp values."
X, y = X_train_all, y_train_all
elif dataframe is not None and label is not None:
assert isinstance(
dataframe, pd.DataFrame
), "dataframe must be a pandas DataFrame"
assert label in dataframe.columns, "label must a column name in dataframe"
self._df = True
if self._state.task == TS_FORECAST:
assert (
dataframe[dataframe.columns[0]].dtype.name == "datetime64[ns]"
), f"For '{TS_FORECAST}' task, the first column must contain timestamp values."
X = dataframe.drop(columns=label)
self._nrow, self._ndim = X.shape
y = dataframe[label]
else:
raise ValueError("either X_train+y_train or dataframe+label are required")
if issparse(X_train_all):
self._transformer = self._label_transformer = False
self._X_train_all, self._y_train_all = X, y
else:
from .data import DataTransformer
self._transformer = DataTransformer()
self._X_train_all, self._y_train_all = self._transformer.fit_transform(
X, y, self._state.task
)
self._label_transformer = self._transformer.label_transformer
self._sample_weight_full = self._state.fit_kwargs.get("sample_weight")
if X_val is not None and y_val is not None:
assert (
isinstance(X_val, np.ndarray)
or issparse(X_val)
or isinstance(X_val, pd.DataFrame)
), (
"X_val must be None, a numpy array, a pandas dataframe, "
"or Scipy sparse matrix."
)
assert isinstance(y_val, np.ndarray) or isinstance(
y_val, pd.Series
), "y_val must be None, a numpy array or a pandas series."
assert X_val.size != 0 and y_val.size != 0, (
"Validation data are expected to be nonempty. "
"Use None for X_val and y_val if no validation data."
)
if isinstance(y_val, np.ndarray):
y_val = y_val.flatten()
assert (
X_val.shape[0] == y_val.shape[0]
), "# rows in X_val must match length of y_val."
if self._transformer:
self._state.X_val = self._transformer.transform(X_val, self._state.task)
else:
self._state.X_val = X_val
if self._label_transformer:
self._state.y_val = self._label_transformer.transform(
y_val, self._state.task
)
else:
self._state.y_val = y_val
else:
self._state.X_val = self._state.y_val = None
if groups is not None and len(groups) != self._nrow:
# groups is given as group counts
self._state.groups = np.concatenate([[i] * c for i, c in enumerate(groups)])
assert (
len(self._state.groups) == self._nrow
), "the sum of group counts must match the number of examples"
self._state.groups_val = (
np.concatenate([[i] * c for i, c in enumerate(groups_val)])
if groups_val is not None
else None
)
else:
self._state.groups_val = groups_val
self._state.groups = groups
def _prepare_data(self, eval_method, split_ratio, n_splits):
X_val, y_val = self._state.X_val, self._state.y_val
if issparse(X_val):
X_val = X_val.tocsr()
X_train_all, y_train_all = self._X_train_all, self._y_train_all
if issparse(X_train_all):
X_train_all = X_train_all.tocsr()
if (
self._state.task in CLASSIFICATION
and self._auto_augment
and self._state.fit_kwargs.get("sample_weight") is None
and self._split_type not in ["time", "group"]
):
# logger.info(f"label {pd.unique(y_train_all)}")
label_set, counts = np.unique(y_train_all, return_counts=True)
# augment rare classes
rare_threshld = 20
rare = counts < rare_threshld
rare_label, rare_counts = label_set[rare], counts[rare]
for i, label in enumerate(rare_label):
count = rare_count = rare_counts[i]
rare_index = y_train_all == label
n = len(y_train_all)
while count < rare_threshld:
if self._df:
X_train_all = concat(
X_train_all, X_train_all.iloc[:n].loc[rare_index]
)
else:
X_train_all = concat(
X_train_all, X_train_all[:n][rare_index, :]
)
if isinstance(y_train_all, pd.Series):
y_train_all = concat(
y_train_all, y_train_all.iloc[:n].loc[rare_index]
)
else:
y_train_all = np.concatenate(
[y_train_all, y_train_all[:n][rare_index]]
)
count += rare_count
logger.info(f"class {label} augmented from {rare_count} to {count}")
SHUFFLE_SPLIT_TYPES = ["uniform", "stratified"]
if self._split_type in SHUFFLE_SPLIT_TYPES:
if self._sample_weight_full is not None:
X_train_all, y_train_all, self._state.sample_weight_all = shuffle(
X_train_all,
y_train_all,
self._sample_weight_full,
random_state=RANDOM_SEED,
)
self._state.fit_kwargs["sample_weight"] = self._state.sample_weight_all
else:
X_train_all, y_train_all = shuffle(
X_train_all, y_train_all, random_state=RANDOM_SEED
)
if self._df:
X_train_all.reset_index(drop=True, inplace=True)
if isinstance(y_train_all, pd.Series):
y_train_all.reset_index(drop=True, inplace=True)
X_train, y_train = X_train_all, y_train_all
self._state.groups_all = self._state.groups
if X_val is None and eval_method == "holdout":
# if eval_method = holdout, make holdout data
if self._split_type == "time":
if self._state.task == TS_FORECAST:
num_samples = X_train_all.shape[0]
period = self._state.fit_kwargs["period"]
assert (
period < num_samples
), f"period={period}>#examples={num_samples}"
split_idx = num_samples - period
X_train = X_train_all[:split_idx]
y_train = y_train_all[:split_idx]
X_val = X_train_all[split_idx:]
y_val = y_train_all[split_idx:]
else:
if "sample_weight" in self._state.fit_kwargs:
(
X_train,
X_val,
y_train,
y_val,
self._state.fit_kwargs["sample_weight"],
self._state.weight_val,
) = train_test_split(
X_train_all,
y_train_all,
self._state.fit_kwargs["sample_weight"],
test_size=split_ratio,
shuffle=False,
)
else:
X_train, X_val, y_train, y_val = train_test_split(
X_train_all,
y_train_all,
test_size=split_ratio,
shuffle=False,
)
elif self._split_type == "group":
gss = GroupShuffleSplit(
n_splits=1, test_size=split_ratio, random_state=RANDOM_SEED
)
for train_idx, val_idx in gss.split(
X_train_all, y_train_all, self._state.groups_all
):
if self._df:
X_train = X_train_all.iloc[train_idx]
X_val = X_train_all.iloc[val_idx]
else:
X_train, X_val = X_train_all[train_idx], X_train_all[val_idx]
y_train, y_val = y_train_all[train_idx], y_train_all[val_idx]
self._state.groups = self._state.groups_all[train_idx]
self._state.groups_val = self._state.groups_all[val_idx]
elif self._state.task in CLASSIFICATION:
# for classification, make sure the labels are complete in both
# training and validation data
label_set, first = np.unique(y_train_all, return_index=True)
rest = []
last = 0
first.sort()
for i in range(len(first)):
rest.extend(range(last, first[i]))
last = first[i] + 1
rest.extend(range(last, len(y_train_all)))
X_first = X_train_all.iloc[first] if self._df else X_train_all[first]
X_rest = X_train_all.iloc[rest] if self._df else X_train_all[rest]
y_rest = y_train_all[rest]
stratify = y_rest if self._split_type == "stratified" else None
if "sample_weight" in self._state.fit_kwargs:
(
X_train,
X_val,
y_train,
y_val,
weight_train,
weight_val,
) = train_test_split(
X_rest,
y_rest,
self._state.fit_kwargs["sample_weight"][rest],
test_size=split_ratio,
random_state=RANDOM_SEED,
)
weight1 = self._state.fit_kwargs["sample_weight"][first]
self._state.weight_val = concat(weight1, weight_val)
self._state.fit_kwargs["sample_weight"] = concat(
weight1, weight_train
)
else:
X_train, X_val, y_train, y_val = train_test_split(
X_rest,
y_rest,
test_size=split_ratio,
stratify=stratify,
random_state=RANDOM_SEED,
)
X_train = concat(X_first, X_train)
y_train = (
concat(label_set, y_train)
if self._df
else np.concatenate([label_set, y_train])
)
X_val = concat(X_first, X_val)
y_val = (
concat(label_set, y_val)
if self._df
else np.concatenate([label_set, y_val])
)
elif self._state.task == "regression":
if "sample_weight" in self._state.fit_kwargs:
(
X_train,
X_val,
y_train,
y_val,
self._state.fit_kwargs["sample_weight"],
self._state.weight_val,
) = train_test_split(
X_train_all,
y_train_all,
self._state.fit_kwargs["sample_weight"],
test_size=split_ratio,
random_state=RANDOM_SEED,
)
else:
X_train, X_val, y_train, y_val = train_test_split(
X_train_all,
y_train_all,
test_size=split_ratio,
random_state=RANDOM_SEED,
)
self._state.data_size = X_train.shape[0]
self.data_size_full = len(y_train_all)
self._state.X_train, self._state.y_train = X_train, y_train
self._state.X_val, self._state.y_val = X_val, y_val
self._state.X_train_all = X_train_all
self._state.y_train_all = y_train_all
if self._split_type == "group":
# logger.info("Using GroupKFold")
assert (
len(self._state.groups_all) == y_train_all.size
), "the length of groups must match the number of examples"
assert (
len(np.unique(self._state.groups_all)) >= n_splits
), "the number of groups must be equal or larger than n_splits"
self._state.kf = GroupKFold(n_splits)
self._state.kf.groups = self._state.groups_all
elif self._split_type == "stratified":
# logger.info("Using StratifiedKFold")
assert y_train_all.size >= n_splits, (
f"{n_splits}-fold cross validation"
f" requires input data with at least {n_splits} examples."
)
assert y_train_all.size >= 2 * n_splits, (
f"{n_splits}-fold cross validation with metric=r2 "
f"requires input data with at least {n_splits*2} examples."
)
self._state.kf = RepeatedStratifiedKFold(
n_splits=n_splits, n_repeats=1, random_state=RANDOM_SEED
)
elif self._split_type == "time":
# logger.info("Using TimeSeriesSplit")
if self._state.task == TS_FORECAST:
period = self._state.fit_kwargs["period"]
if period * (n_splits + 1) > y_train_all.size:
n_splits = int(y_train_all.size / period - 1)
assert n_splits >= 2, (
f"cross validation for forecasting period={period}"
f" requires input data with at least {3 * period} examples."
)
logger.info(f"Using nsplits={n_splits} due to data size limit.")
self._state.kf = TimeSeriesSplit(n_splits=n_splits, test_size=period)
else:
self._state.kf = TimeSeriesSplit(n_splits=n_splits)
else:
# logger.info("Using RepeatedKFold")
self._state.kf = RepeatedKFold(
n_splits=n_splits, n_repeats=1, random_state=RANDOM_SEED
)
def add_learner(self, learner_name, learner_class):
"""Add a customized learner
Args:
learner_name: A string of the learner's name
learner_class: A subclass of flaml.model.BaseEstimator
"""
self._state.learner_classes[learner_name] = learner_class
def get_estimator_from_log(self, log_file_name, record_id, task):
"""Get the estimator from log file
Args:
log_file_name: A string of the log file name
record_id: An integer of the record ID in the file,
0 corresponds to the first trial
task: A string of the task type,
'binary', 'multi', 'regression', 'ts_forecast', 'rank'
Returns:
An estimator object for the given configuration
"""
with training_log_reader(log_file_name) as reader:
record = reader.get_record(record_id)
estimator = record.learner
config = record.config
estimator, _ = train_estimator(
None,
None,
config,
task,
estimator,
estimator_class=self._state.learner_classes.get(estimator),
)
return estimator
def retrain_from_log(
self,
log_file_name,
X_train=None,
y_train=None,
dataframe=None,
label=None,
time_budget=0,
task="classification",
eval_method="auto",
split_ratio=SPLIT_RATIO,
n_splits=N_SPLITS,
split_type=None,
groups=None,
n_jobs=-1,
train_best=True,
train_full=False,
record_id=-1,
auto_augment=True,
**fit_kwargs,
):
"""Retrain from log file
Args:
log_file_name: A string of the log file name
X_train: A numpy array of training data in shape n*m
For 'ts_forecast' task, the first column of X_train
must be the timestamp column (datetime type). Other
columns in the dataframe are assumed to be exogenous
variables (categorical or numeric).
y_train: A numpy array of labels in shape n*1
dataframe: A dataframe of training data including label column.
For 'ts_forecast' task, dataframe must be specified and should
have at least two columns: timestamp and label, where the first
column is the timestamp column (datetime type). Other columns
in the dataframe are assumed to be exogenous variables
(categorical or numeric).
label: A str of the label column name, e.g., 'label';
Note: If X_train and y_train are provided,
dataframe and label are ignored;
If not, dataframe and label must be provided.
time_budget: A float number of the time budget in seconds.
task: A string of the task type, e.g.,
'classification', 'regression', 'ts_forecast', 'rank'.
eval_method: A string of resampling strategy, one of
['auto', 'cv', 'holdout'].
split_ratio: A float of the validation data percentage for holdout.
n_splits: An integer of the number of folds for cross-validation.
split_type: str or None, default=None | the data split type.
For classification tasks, valid choices are [
None, 'stratified', 'uniform', 'time', 'group']. None -> stratified.
For regression tasks, valid choices are [None, 'uniform', 'time'].
None -> uniform.
For ts_forecast tasks, must be None or 'time'.
For ranking task, must be None or 'group'.
groups: None or array-like | Group labels (with matching length to
y_train) or groups counts (with sum equal to length of y_train)
for training data.
n_jobs: An integer of the number of threads for training. Use all
available resources when n_jobs == -1.
train_best: A boolean of whether to train the best config in the
time budget; if false, train the last config in the budget.
train_full: A boolean of whether to train on the full data. If true,
eval_method and sample_size in the log file will be ignored.
record_id: the ID of the training log record from which the model will
be retrained. By default `record_id = -1` which means this will be
ignored. `record_id = 0` corresponds to the first trial, and
when `record_id >= 0`, `time_budget` will be ignored.
auto_augment: boolean, default=True | Whether to automatically
augment rare classes.
**fit_kwargs: Other key word arguments to pass to fit() function of
the searched learners, such as sample_weight.
"""
if task == FORECAST:
self._state.task = TS_FORECAST
else:
self._state.task = task
self._state.fit_kwargs = fit_kwargs
self._validate_data(X_train, y_train, dataframe, label, groups=groups)
logger.info("log file name {}".format(log_file_name))
best_config = None
best_val_loss = float("+inf")
best_estimator = None
sample_size = None
time_used = 0.0
training_duration = 0
best = None
with training_log_reader(log_file_name) as reader:
if record_id >= 0:
best = reader.get_record(record_id)
else:
for record in reader.records():
time_used = record.wall_clock_time
if time_used > time_budget:
break
training_duration = time_used
val_loss = record.validation_loss
if val_loss <= best_val_loss or not train_best:
if val_loss == best_val_loss and train_best:
size = record.sample_size
if size > sample_size:
best = record
best_val_loss = val_loss
sample_size = size
else:
best = record
size = record.sample_size
best_val_loss = val_loss
sample_size = size
if not training_duration:
logger.warning(
f"No estimator found within time_budget={time_budget}"
)
from .model import BaseEstimator as Estimator
self._trained_estimator = Estimator()
return training_duration
if not best:
return
best_estimator = best.learner
best_config = best.config
sample_size = len(self._y_train_all) if train_full else best.sample_size
logger.info(
"estimator = {}, config = {}, #training instances = {}".format(
best_estimator, best_config, sample_size
)
)
# Partially copied from fit() function
# Initilize some attributes required for retrain_from_log
self._state.task = task
self._decide_split_type(split_type)
if record_id >= 0:
eval_method = "cv"
elif eval_method == "auto":
eval_method = self._decide_eval_method(time_budget)
self.modelcount = 0
self._auto_augment = auto_augment
self._prepare_data(eval_method, split_ratio, n_splits)
self._state.time_budget = None
self._state.n_jobs = n_jobs
self._trained_estimator = self._state._train_with_config(
best_estimator, best_config, sample_size
)[0]
logger.info("retrain from log succeeded")
return training_duration
def _decide_split_type(self, split_type):
if self._state.task == "classification":
self._state.task = get_classification_objective(
len(np.unique(self._y_train_all))
)
if self._state.task in CLASSIFICATION:
assert split_type in [None, "stratified", "uniform", "time", "group"]
self._split_type = (
split_type or self._state.groups is None and "stratified" or "group"
)
elif self._state.task == "regression":
assert split_type in [None, "uniform", "time", "group"]
self._split_type = split_type or "uniform"
elif self._state.task == TS_FORECAST:
assert split_type in [None, "time"]
self._split_type = "time"
assert isinstance(
self._state.fit_kwargs.get("period"), int
), f"missing a required integer 'period' for '{TS_FORECAST}' task."
elif self._state.task == "rank":
assert (
self._state.groups is not None
), "groups must be specified for ranking task."
assert split_type in [None, "group"]
self._split_type = "group"
def _decide_eval_method(self, time_budget):
if self._state.X_val is not None:
return "holdout"
nrow, dim = self._nrow, self._ndim
if (
time_budget is None
or nrow * dim / 0.9 < SMALL_LARGE_THRES * (time_budget / 3600)
and nrow < CV_HOLDOUT_THRESHOLD
):
# time allows or sampling can be used and cv is necessary
return "cv"
else:
return "holdout"
@property
def search_space(self) -> dict:
"""Search space
Must be called after fit(...) (use max_iter=0 to prevent actual fitting)
Returns:
A dict of the search space
"""
estimator_list = self.estimator_list
if len(estimator_list) == 1:
estimator = estimator_list[0]
space = self._search_states[estimator].search_space.copy()
space["learner"] = estimator
return space
choices = []
for estimator in estimator_list:
space = self._search_states[estimator].search_space.copy()
space["learner"] = estimator
choices.append(space)
return {"ml": tune.choice(choices)}
@property
def low_cost_partial_config(self) -> dict:
"""Low cost partial config
Returns:
A dict.
(a) if there is only one estimator in estimator_list, each key is a
hyperparameter name.
(b) otherwise, it is a nested dict with 'ml' as the key, and
a list of the low_cost_partial_configs as the value, corresponding
to each learner's low_cost_partial_config; the estimator index as
an integer corresponding to the cheapest learner is appended to the
list at the end.
"""
if len(self.estimator_list) == 1:
estimator = self.estimator_list[0]
c = self._search_states[estimator].low_cost_partial_config
return c
else:
configs = []
for estimator in self.estimator_list:
c = self._search_states[estimator].low_cost_partial_config
configs.append(c)
configs.append(
np.argmin(
[
self._state.learner_classes.get(estimator).cost_relative2lgbm()
for estimator in self.estimator_list
]
)
)
config = {"ml": configs}
return config
@property
def cat_hp_cost(self) -> dict:
"""Categorical hyperparameter cost
Returns:
A dict.
(a) if there is only one estimator in estimator_list, each key is a
hyperparameter name.
(b) otherwise, it is a nested dict with 'ml' as the key, and
a list of the cat_hp_cost's as the value, corresponding
to each learner's cat_hp_cost; the cost relative to lgbm for each
learner (as a list itself) is appended to the list at the end.
"""
if len(self.estimator_list) == 1:
estimator = self.estimator_list[0]
c = self._search_states[estimator].cat_hp_cost
return c
else:
configs = []
for estimator in self.estimator_list:
c = self._search_states[estimator].cat_hp_cost
configs.append(c)
configs.append(
[
self._state.learner_classes.get(estimator).cost_relative2lgbm()
for estimator in self.estimator_list
]
)
config = {"ml": configs}
return config
@property
def points_to_evaluate(self) -> dict:
"""Initial points to evaluate
Returns:
A list of dicts. Each dict is the initial point for each learner
"""
points = []
for estimator in self.estimator_list:
if isinstance(self._search_states[estimator].init_config, list):
configs = self._search_states[estimator].init_config
else:
configs = [self._search_states[estimator].init_config]
for config in configs:
config["learner"] = estimator
if len(self.estimator_list) > 1:
points.append({"ml": config})
else:
points.append(config)
return points
@property
def prune_attr(self) -> Optional[str]:
"""Attribute for pruning
Returns:
A string for the sample size attribute or None
"""
return "FLAML_sample_size" if self._sample else None
@property
def min_resource(self) -> Optional[float]:
"""Attribute for pruning
Returns:
A float for the minimal sample size or None
"""
return self._min_sample_size if self._sample else None
@property
def max_resource(self) -> Optional[float]:
"""Attribute for pruning
Returns:
A float for the maximal sample size or None
"""
return self._state.data_size if self._sample else None
@property
def trainable(self) -> Callable[[dict], Optional[float]]:
"""Training function
Returns:
A function that evaluates each config and returns the loss
"""
self._state.time_from_start = 0
for estimator in self.estimator_list:
search_state = self._search_states[estimator]
if not hasattr(search_state, "training_function"):
search_state.training_function = partial(
AutoMLState._compute_with_config_base, self._state, estimator
)
states = self._search_states
mem_res = self._mem_thres
def train(config: dict):
sample_size = config.get("FLAML_sample_size")
config = config.get("ml", config).copy()
if sample_size:
config["FLAML_sample_size"] = sample_size
estimator = config["learner"]
# check memory constraints before training
if states[estimator].learner_class.size(config) <= mem_res:
del config["learner"]
result = states[estimator].training_function(config)
return result
else:
return {
"pred_time": 0,
"wall_clock_time": None,
"metric_for_logging": np.inf,
"val_loss": np.inf,
"trained_estimator": None,
}
return train
@property
def metric_constraints(self) -> list:
"""Metric constraints
Returns:
A list of the metric constraints
"""
constraints = []
if np.isfinite(self._pred_time_limit):
constraints.append(("pred_time", "<=", self._pred_time_limit))
return constraints
def fit(
self,
X_train=None,
y_train=None,
dataframe=None,
label=None,
metric="auto",
task="classification",
n_jobs=-1,
log_file_name="flaml.log",
estimator_list="auto",
time_budget=60,
max_iter=1000000,
sample=True,
ensemble=False,
eval_method="auto",
log_type="better",
model_history=False,
split_ratio=SPLIT_RATIO,
n_splits=N_SPLITS,
log_training_metric=False,
mem_thres=MEM_THRES,
pred_time_limit=np.inf,
train_time_limit=np.inf,
X_val=None,
y_val=None,
sample_weight_val=None,
groups_val=None,
groups=None,
verbose=3,
retrain_full=True,
split_type=None,
learner_selector="sample",
hpo_method=None,
starting_points={},
seed=None,
n_concurrent_trials=1,
keep_search_state=False,
early_stop=False,
append_log=False,
auto_augment=True,
min_sample_size=MIN_SAMPLE_TRAIN,
use_ray=False,
**fit_kwargs,
):
"""Find a model for a given task
Args:
X_train: A numpy array or a pandas dataframe of training data in
shape (n, m). For 'ts_forecast' task, the first column of X_train
must be the timestamp column (datetime type). Other columns in
the dataframe are assumed to be exogenous variables (categorical or numeric).
y_train: A numpy array or a pandas series of labels in shape (n, ).
dataframe: A dataframe of training data including label column.
For 'ts_forecast' task, dataframe must be specified and must have
at least two columns, timestamp and label, where the first
column is the timestamp column (datetime type). Other columns in
the dataframe are assumed to be exogenous variables (categorical or numeric).
label: A str of the label column name for, e.g., 'label';
Note: If X_train and y_train are provided,
dataframe and label are ignored;
If not, dataframe and label must be provided.
metric: A string of the metric name or a function,
e.g., 'accuracy', 'roc_auc', 'roc_auc_ovr', 'roc_auc_ovo',
'f1', 'micro_f1', 'macro_f1', 'log_loss', 'mae', 'mse', 'r2',
'mape'.
If passing a customized metric function, the function needs to
have the follwing signature:
.. code-block:: python
def custom_metric(
X_test, y_test, estimator, labels,
X_train, y_train, weight_test=None, weight_train=None,
config=None, groups_test=None, groups_train=None,
):
return metric_to_minimize, metrics_to_log
which returns a float number as the minimization objective,
and a dictionary as the metrics to log.
task: A string of the task type, e.g.,
'classification', 'regression', 'ts_forecast', 'rank'.
n_jobs: An integer of the number of threads for training.
log_file_name: A string of the log file name.
estimator_list: A list of strings for estimator names, or 'auto'
e.g.,
.. code-block:: python
['lgbm', 'xgboost', 'catboost', 'rf', 'extra_tree']
time_budget: A float number of the time budget in seconds.
max_iter: An integer of the maximal number of iterations.
sample: A boolean of whether to sample the training data during
search.
ensemble: boolean or dict | default=False. Whether to perform
ensemble after search. Can be a dict with keys 'passthrough'
and 'final_estimator' to specify the passthrough and
final_estimator in the stacker.
eval_method: A string of resampling strategy, one of
['auto', 'cv', 'holdout'].
split_ratio: A float of the valiation data percentage for holdout.
n_splits: An integer of the number of folds for cross - validation.
log_type: A string of the log type, one of
['better', 'all'].
'better' only logs configs with better loss than previos iters
'all' logs all the tried configs.
model_history: A boolean of whether to keep the history of best
models in the history property. Make sure memory is large
enough if setting to True.
log_training_metric: A boolean of whether to log the training
metric for each model.
mem_thres: A float of the memory size constraint in bytes.
pred_time_limit: A float of the prediction latency constraint in seconds.
train_time_limit: A float of the training time constraint in seconds.
X_val: None or a numpy array or a pandas dataframe of validation data.
y_val: None or a numpy array or a pandas series of validation labels.
sample_weight_val: None or a numpy array of the sample weight of
validation data of the same shape as y_val.
groups_val: None or array-like | group labels (with matching length
to y_val) or group counts (with sum equal to length of y_val)
for validation data. Need to be consistent with groups.
groups: None or array-like | Group labels (with matching length to
y_train) or groups counts (with sum equal to length of y_train)
for training data.
verbose: int, default=3 | Controls the verbosity, higher means more
messages.
retrain_full: bool or str, default=True | whether to retrain the
selected model on the full training data when using holdout.
True - retrain only after search finishes; False - no retraining;
'budget' - do best effort to retrain without violating the time
budget.
split_type: str or None, default=None | the data split type.
For classification tasks, valid choices are [
None, 'stratified', 'uniform', 'time']. None -> stratified.
For regression tasks, valid choices are [None, 'uniform', 'time'].
None -> uniform.
For ts_forecast tasks, must be None or 'time'.
For ranking task, must be None or 'group'.
hpo_method: str or None, default=None | The hyperparameter
optimization method. By default, CFO is used for sequential
search and BlendSearch is used for parallel search.
No need to set when using flaml's default search space or using
a simple customized search space. When set to 'bs', BlendSearch
is used. BlendSearch can be tried when the search space is
complex, for example, containing multiple disjoint, discontinuous
subspaces. When set to 'random', random search is used.
starting_points: A dictionary to specify the starting hyperparameter
config for the estimators.
Keys are the name of the estimators, and values are the starting
hyperparamter configurations for the corresponding estimators.
The value can be a single hyperparamter configuration dict or a list
of hyperparamter configuration dicts.
In the following code example, we get starting_points from the
automl_experiment and use them in the new_automl_experiment.
e.g.,
.. code-block:: python
from flaml import AutoML
automl_experiment = AutoML()
X_train, y_train = load_iris(return_X_y=True)
automl_experiment.fit(X_train, y_train)
starting_points = automl_experiment.best_config_per_estimator
new_automl_experiment = AutoML()
new_automl_experiment.fit(X_train, y_train,
starting_points=starting_points)
seed: int or None, default=None | The random seed for np.random.
n_concurrent_trials: [Experimental] int, default=1 | The number of
concurrent trials. For n_concurrent_trials > 1, installation of
ray is required: `pip install flaml[ray]`.
keep_search_state: boolean, default=False | Whether to keep search
state after fit(). By default the state is deleted for space
saving.
early_stop: boolean, default=False | Whether to stop early if the
search is considered to converge.
append_log: boolean, default=False | Whetehr to directly append the log
records to the input log file if it exists.
auto_augment: boolean, default=True | Whether to automatically
augment rare classes.
min_sample_size: int, default=MIN_SAMPLE_TRAIN | the minimal sample
size when sample=True.
use_ray: boolean, default=False | Whether to use ray to run the training
in separate processes. This can be used to prevent OOM for large
datasets, but will incur more overhead in time. Only use it if
you run into OOM failures.
**fit_kwargs: Other key word arguments to pass to fit() function of
the searched learners, such as sample_weight. Include period as
a key word argument for 'ts_forecast' task.
"""
self._state._start_time_flag = self._start_time_flag = time.time()
if task == FORECAST:
self._state.task = TS_FORECAST
else:
self._state.task = task
self._state.log_training_metric = log_training_metric
self._state.fit_kwargs = fit_kwargs
self._state.weight_val = sample_weight_val
self._validate_data(
X_train, y_train, dataframe, label, X_val, y_val, groups_val, groups
)
self._search_states = {} # key: estimator name; value: SearchState
self._random = np.random.RandomState(RANDOM_SEED)
if seed is not None:
np.random.seed(seed)
self._seed = seed + 19823 if seed is not None else 20
self._learner_selector = learner_selector
old_level = logger.getEffectiveLevel()
self.verbose = verbose
# if verbose == 0:
logger.setLevel(50 - verbose * 10)
if (not mlflow or not mlflow.active_run()) and not logger.handlers:
# Add the console handler.
_ch = logging.StreamHandler()
_ch.setFormatter(logger_formatter)
logger.addHandler(_ch)
self._decide_split_type(split_type)
logger.info(f"Data split method: {self._split_type}")
if eval_method == "auto" or self._state.X_val is not None:
eval_method = self._decide_eval_method(time_budget)
self._state.eval_method = eval_method
logger.info("Evaluation method: {}".format(eval_method))
self._retrain_in_budget = retrain_full == "budget" and (
eval_method == "holdout" and self._state.X_val is None
)
self._retrain_final = (
retrain_full is True
and eval_method == "holdout"
and self._state.X_val is None
or eval_method == "cv"
or max_iter == 1
)
self._auto_augment = auto_augment
self._min_sample_size = min_sample_size
self._prepare_data(eval_method, split_ratio, n_splits)
self._sample = (
sample
and task != "rank"
and eval_method != "cv"
and (self._min_sample_size * SAMPLE_MULTIPLY_FACTOR < self._state.data_size)
)
if "auto" == metric:
if "binary" in self._state.task:
metric = "roc_auc"
elif "multi" in self._state.task:
metric = "log_loss"
elif self._state.task == TS_FORECAST:
metric = "mape"
elif self._state.task == "rank":
metric = "ndcg"
else:
metric = "r2"
self._state.metric = metric
if metric in [
"r2",
"accuracy",
"roc_auc",
"roc_auc_ovr",
"roc_auc_ovo",
"f1",
"ap",
"micro_f1",
"macro_f1",
"ndcg",
]:
error_metric = f"1-{metric}"
elif isinstance(metric, str):
error_metric = metric
else:
error_metric = "customized metric"
logger.info(f"Minimizing error metric: {error_metric}")
if "auto" == estimator_list:
if self._state.task == TS_FORECAST:
try:
import prophet
estimator_list = ["prophet", "arima", "sarimax"]
except ImportError:
estimator_list = ["arima", "sarimax"]
elif self._state.task == "rank":
estimator_list = ["lgbm", "xgboost"]
else:
try:
import catboost
estimator_list = ["lgbm", "rf", "catboost", "xgboost", "extra_tree"]
except ImportError:
estimator_list = ["lgbm", "rf", "xgboost", "extra_tree"]
if "regression" != self._state.task:
estimator_list += ["lrl1"]
for estimator_name in estimator_list:
if estimator_name not in self._state.learner_classes:
self.add_learner(
estimator_name,
get_estimator_class(self._state.task, estimator_name),
)
# set up learner search space
for estimator_name in estimator_list:
estimator_class = self._state.learner_classes[estimator_name]
estimator_class.init()
self._search_states[estimator_name] = SearchState(
learner_class=estimator_class,
data_size=self._state.data_size,
task=self._state.task,
starting_point=starting_points.get(estimator_name),
)
logger.info("List of ML learners in AutoML Run: {}".format(estimator_list))
self.estimator_list = estimator_list
self._state.time_budget = time_budget or 1e10
self._active_estimators = estimator_list.copy()
self._ensemble = ensemble
self._max_iter = max_iter
self._mem_thres = mem_thres
self._pred_time_limit = pred_time_limit
self._state.train_time_limit = train_time_limit
self._log_type = log_type
self.split_ratio = split_ratio
self._state.save_model_history = model_history
self._state.n_jobs = n_jobs
self._n_concurrent_trials = n_concurrent_trials
self._early_stop = early_stop
self._use_ray = use_ray or n_concurrent_trials > 1
self._hpo_method = hpo_method or ("bs" if self._use_ray else "cfo")
if log_file_name:
with training_log_writer(log_file_name, append_log) as save_helper:
self._training_log = save_helper
self._search()
else:
self._training_log = None
self._search()
if self._best_estimator:
logger.info("fit succeeded")
logger.info(
f"Time taken to find the best model: {self._time_taken_best_iter}"
)
if (
self._hpo_method in ("cfo", "bs")
and (self._time_taken_best_iter >= time_budget * 0.7)
and not all(
state.search_alg and state.search_alg.searcher.is_ls_ever_converged
for state in self._search_states.values()
)
):
logger.warning(
"Time taken to find the best model is {0:.0f}% of the "
"provided time budget and not all estimators' hyperparameter "
"search converged. Consider increasing the time budget.".format(
self._time_taken_best_iter / time_budget * 100
)
)
if not keep_search_state:
# release space
del self._X_train_all, self._y_train_all, self._state.kf
del self._state.X_train, self._state.X_train_all, self._state.X_val
del self._state.y_train, self._state.y_train_all, self._state.y_val
del self._sample_weight_full, self._state.fit_kwargs
del self._state.groups, self._state.groups_all, self._state.groups_val
for state in self._search_states.values():
if state.trained_estimator:
del state.trained_estimator
# if verbose == 0:
logger.setLevel(old_level)
def _search_parallel(self):
try:
from ray import __version__ as ray_version
assert ray_version >= "1.0.0"
import ray
from ray.tune.suggest import ConcurrencyLimiter
except (ImportError, AssertionError):
raise ImportError(
"n_concurrent_trial>1 or use_ray=True requires installation of ray. "
"Please run pip install flaml[ray]"
)
if self._hpo_method in ("cfo", "grid"):
from flaml import CFO as SearchAlgo
elif "bs" == self._hpo_method:
from flaml import BlendSearch as SearchAlgo
elif "random" == self._hpo_method:
from ray.tune.suggest import BasicVariantGenerator as SearchAlgo
from ray.tune.sample import Domain
else:
raise NotImplementedError(
f"hpo_method={self._hpo_method} is not recognized. "
"'cfo' and 'bs' are supported."
)
space = self.search_space
if self._hpo_method == "random":
# Any point in points_to_evaluate must consist of hyperparamters
# that are tunable, which can be identified by checking whether
# the corresponding value in the search space is an instance of
# the 'Domain' class from flaml or ray.tune
points_to_evaluate = self.points_to_evaluate.copy()
to_del = []
for k, v in space.items():
if not isinstance(v, Domain):
to_del.append(k)
for k in to_del:
for p in points_to_evaluate:
if k in p:
del p[k]
search_alg = SearchAlgo(
max_concurrent=self._n_concurrent_trials,
points_to_evaluate=points_to_evaluate,
)
else:
self._state.time_from_start = time.time() - self._start_time_flag
time_left = self._state.time_budget - self._state.time_from_start
search_alg = SearchAlgo(
metric="val_loss",
space=space,
low_cost_partial_config=self.low_cost_partial_config,
points_to_evaluate=self.points_to_evaluate,
cat_hp_cost=self.cat_hp_cost,
prune_attr=self.prune_attr,
min_resource=self.min_resource,
max_resource=self.max_resource,
config_constraints=[
(partial(size, self._state), "<=", self._mem_thres)
],
metric_constraints=self.metric_constraints,
seed=self._seed,
time_budget_s=time_left,
)
search_alg = ConcurrencyLimiter(search_alg, self._n_concurrent_trials)
resources_per_trial = (
{"cpu": self._state.n_jobs} if self._state.n_jobs > 1 else None
)
analysis = ray.tune.run(
self.trainable,
search_alg=search_alg,
config=space,
metric="val_loss",
mode="min",
resources_per_trial=resources_per_trial,
time_budget_s=self._state.time_budget,
num_samples=self._max_iter,
verbose=max(self.verbose - 2, 0),
raise_on_failed_trial=False,
)
# logger.info([trial.last_result for trial in analysis.trials])
trials = sorted(
(
trial
for trial in analysis.trials
if trial.last_result
and trial.last_result["wall_clock_time"] is not None
),
key=lambda x: x.last_result["wall_clock_time"],
)
for _track_iter, trial in enumerate(trials):
result = trial.last_result
better = False
if result:
config = result["config"]
estimator = config.get("ml", config)["learner"]
search_state = self._search_states[estimator]
search_state.update(result, 0, self._state.save_model_history)
if result["wall_clock_time"] is not None:
self._state.time_from_start = result["wall_clock_time"]
if search_state.sample_size == self._state.data_size:
self._iter_per_learner[estimator] += 1
if not self._fullsize_reached:
self._fullsize_reached = True
if search_state.best_loss < self._state.best_loss:
self._state.best_loss = search_state.best_loss
self._best_estimator = estimator
self._config_history[_track_iter] = (
self._best_estimator,
config,
self._time_taken_best_iter,
)
if self._state.save_model_history:
self._model_history[
_track_iter
] = search_state.trained_estimator
self._trained_estimator = search_state.trained_estimator
self._best_iteration = _track_iter
self._time_taken_best_iter = self._state.time_from_start
better = True
self._search_states[estimator].best_config = config
if (better or self._log_type == "all") and self._training_log:
self._training_log.append(
self._iter_per_learner[estimator],
search_state.metric_for_logging,
search_state.trial_time,
self._state.time_from_start,
search_state.val_loss,
config,
estimator,
search_state.sample_size,
)
def _search_sequential(self):
try:
from ray import __version__ as ray_version
assert ray_version >= "1.0.0"
from ray.tune.suggest import ConcurrencyLimiter
except (ImportError, AssertionError):
from .searcher.suggestion import ConcurrencyLimiter
if self._hpo_method in ("cfo", "grid"):
from flaml import CFO as SearchAlgo
elif "optuna" == self._hpo_method:
try:
from ray import __version__ as ray_version
assert ray_version >= "1.0.0"
from ray.tune.suggest.optuna import OptunaSearch as SearchAlgo
except (ImportError, AssertionError):
from .searcher.suggestion import OptunaSearch as SearchAlgo
elif "bs" == self._hpo_method:
from flaml import BlendSearch as SearchAlgo
elif "random" == self._hpo_method:
from flaml.searcher import RandomSearch as SearchAlgo
elif "cfocat" == self._hpo_method:
from flaml.searcher.cfo_cat import CFOCat as SearchAlgo
else:
raise NotImplementedError(
f"hpo_method={self._hpo_method} is not recognized. "
"'cfo' and 'bs' are supported."
)
est_retrain_time = next_trial_time = 0
best_config_sig = None
better = True # whether we find a better model in one trial
if self._ensemble:
self.best_model = {}
if self._max_iter < 2 and self.estimator_list:
# when max_iter is 1, no need to search
# TODO: otherwise, need to make sure SearchStates.init_config is inside search space
self._max_iter = 0
self._best_estimator = estimator = self.estimator_list[0]
self._selected = state = self._search_states[estimator]
state.best_config_sample_size = self._state.data_size
state.best_config = (
state.init_config
if isinstance(state.init_config, dict)
else state.init_config[0]
)
for self._track_iter in range(self._max_iter):
if self._estimator_index is None:
estimator = self._active_estimators[0]
else:
estimator = self._select_estimator(self._active_estimators)
if not estimator:
break
logger.info(f"iteration {self._track_iter}, current learner {estimator}")
search_state = self._search_states[estimator]
self._state.time_from_start = time.time() - self._start_time_flag
time_left = self._state.time_budget - self._state.time_from_start
budget_left = (
time_left
if not self._retrain_in_budget
or better
or (not self.best_estimator)
or self._search_states[self.best_estimator].sample_size
< self._state.data_size
else time_left - est_retrain_time
)
if not search_state.search_alg:
search_state.training_function = partial(
AutoMLState._compute_with_config_base, self._state, estimator
)
search_space = search_state.search_space
if self._sample:
prune_attr = "FLAML_sample_size"
min_resource = self._min_sample_size
max_resource = self._state.data_size
else:
prune_attr = min_resource = max_resource = None
learner_class = self._state.learner_classes.get(estimator)
if "grid" == self._hpo_method: # for synthetic exp only
points_to_evaluate = []
space = search_space
keys = list(space.keys())
domain0, domain1 = space[keys[0]], space[keys[1]]
for x1 in range(domain0.lower, domain0.upper + 1):
for x2 in range(domain1.lower, domain1.upper + 1):
points_to_evaluate.append(
{
keys[0]: x1,
keys[1]: x2,
}
)
self._max_iter_per_learner = len(points_to_evaluate)
low_cost_partial_config = None
else:
points_to_evaluate = (
search_state.init_config
if isinstance(search_state.init_config, list)
else [search_state.init_config]
)
low_cost_partial_config = search_state.low_cost_partial_config
if self._hpo_method in ("bs", "cfo", "grid", "cfocat", "random"):
algo = SearchAlgo(
metric="val_loss",
mode="min",
space=search_space,
points_to_evaluate=points_to_evaluate,
low_cost_partial_config=low_cost_partial_config,
cat_hp_cost=search_state.cat_hp_cost,
prune_attr=prune_attr,
min_resource=min_resource,
max_resource=max_resource,
config_constraints=[
(learner_class.size, "<=", self._mem_thres)
],
metric_constraints=self.metric_constraints,
seed=self._seed,
)
else:
algo = SearchAlgo(
metric="val_loss",
mode="min",
space=search_space,
points_to_evaluate=[
p for p in points_to_evaluate if len(p) == len(search_space)
],
)
search_state.search_alg = ConcurrencyLimiter(algo, max_concurrent=1)
# search_state.search_alg = algo
else:
search_space = None
if self._hpo_method in ("bs", "cfo", "cfocat"):
search_state.search_alg.searcher.set_search_properties(
metric=None,
mode=None,
setting={
"metric_target": self._state.best_loss,
},
)
start_run_time = time.time()
analysis = tune.run(
search_state.training_function,
search_alg=search_state.search_alg,
time_budget_s=min(budget_left, self._state.train_time_limit),
verbose=max(self.verbose - 3, 0),
use_ray=False,
)
time_used = time.time() - start_run_time
better = False
if analysis.trials:
result = analysis.trials[-1].last_result
search_state.update(
result,
time_used=time_used,
save_model_history=self._state.save_model_history,
)
if self._estimator_index is None:
# update init eci estimate
eci_base = search_state.init_eci
self._eci.append(search_state.estimated_cost4improvement)
for e in self.estimator_list[1:]:
self._eci.append(
self._search_states[e].init_eci / eci_base * self._eci[0]
)
self._estimator_index = 0
min_budget = max(10 * self._eci[0], sum(self._eci))
max_budget = 10000 * self._eci[0]
if search_state.sample_size:
ratio = search_state.data_size / search_state.sample_size
min_budget *= ratio
max_budget *= ratio
logger.info(
f"Estimated sufficient time budget={max_budget:.0f}s."
f" Estimated necessary time budget={min_budget:.0f}s."
)
if result["wall_clock_time"] is not None:
self._state.time_from_start = result["wall_clock_time"]
# logger.info(f"{self._search_states[estimator].sample_size}, {data_size}")
if search_state.sample_size == self._state.data_size:
self._iter_per_learner[estimator] += 1
self._fullsize_reached = True
if search_state.best_loss < self._state.best_loss:
best_config_sig = estimator + search_state.get_hist_config_sig(
self.data_size_full, search_state.best_config
)
self._state.best_loss = search_state.best_loss
self._best_estimator = estimator
est_retrain_time = (
search_state.est_retrain_time(self.data_size_full)
if (best_config_sig not in self._retrained_config)
else 0
)
self._config_history[self._track_iter] = (
estimator,
search_state.best_config,
self._state.time_from_start,
)
if self._state.save_model_history:
self._model_history[
self._track_iter
] = search_state.trained_estimator
elif self._trained_estimator:
del self._trained_estimator
self._trained_estimator = None
if not self._retrain_final:
self._trained_estimator = search_state.trained_estimator
self._best_iteration = self._track_iter
self._time_taken_best_iter = self._state.time_from_start
better = True
next_trial_time = search_state.time2eval_best
if search_state.trained_estimator and not (
self._state.save_model_history or self._ensemble
):
# free RAM
if search_state.trained_estimator != self._trained_estimator:
search_state.trained_estimator.cleanup()
del search_state.trained_estimator
search_state.trained_estimator = None
if better or self._log_type == "all":
if self._training_log:
self._training_log.append(
self._iter_per_learner[estimator],
search_state.metric_for_logging,
search_state.trial_time,
self._state.time_from_start,
search_state.val_loss,
search_state.config,
estimator,
search_state.sample_size,
)
if mlflow is not None and mlflow.active_run():
with mlflow.start_run(nested=True):
mlflow.log_metric(
"iter_counter", self._iter_per_learner[estimator]
)
mlflow.log_param(
"metric_for_logging", search_state.metric_for_logging
)
mlflow.log_metric("trial_time", search_state.trial_time)
mlflow.log_metric(
"wall_clock_time", self._state.time_from_start
)
mlflow.log_metric("validation_loss", search_state.val_loss)
mlflow.log_param("config", search_state.config)
mlflow.log_param("learner", estimator)
mlflow.log_param("sample_size", search_state.sample_size)
mlflow.log_metric(
"best_validation_loss", search_state.best_loss
)
mlflow.log_param("best_config", search_state.best_config)
mlflow.log_param("best_learner", self._best_estimator)
logger.info(
" at {:.1f}s,\testimator {}'s best error={:.4f},\tbest estimator {}'s best error={:.4f}".format(
self._state.time_from_start,
estimator,
search_state.best_loss,
self._best_estimator,
self._state.best_loss,
)
)
if (
self._hpo_method in ("cfo", "bs")
and all(
state.search_alg
and state.search_alg.searcher.is_ls_ever_converged
for state in self._search_states.values()
)
and (
self._state.time_from_start
> self._warn_threshold * self._time_taken_best_iter
)
):
logger.warning(
"All estimator hyperparameters local search has "
"converged at least once, and the total search time "
f"exceeds {self._warn_threshold} times the time taken "
"to find the best model."
)
if self._early_stop:
logger.warning("Stopping search as early_stop is set to True.")
break
self._warn_threshold *= 10
else:
logger.info(f"stop trying learner {estimator}")
if self._estimator_index is not None:
self._active_estimators.remove(estimator)
self._estimator_index -= 1
search_state.search_alg.searcher._is_ls_ever_converged = True
if (
self._retrain_in_budget
and best_config_sig
and est_retrain_time
and not better
and self._search_states[self._best_estimator].sample_size
== self._state.data_size
and (
est_retrain_time
<= self._state.time_budget - self._state.time_from_start
<= est_retrain_time + next_trial_time
)
):
state = self._search_states[self._best_estimator]
self._trained_estimator, retrain_time = self._state._train_with_config(
self._best_estimator,
state.best_config,
self.data_size_full,
)
logger.info(
"retrain {} for {:.1f}s".format(self._best_estimator, retrain_time)
)
self._retrained_config[
best_config_sig
] = state.best_config_train_time = retrain_time
est_retrain_time = 0
self._state.time_from_start = time.time() - self._start_time_flag
if (
self._state.time_from_start >= self._state.time_budget
or not self._active_estimators
):
break
if self._ensemble and self._best_estimator:
time_left = self._state.time_budget - self._state.time_from_start
time_ensemble = self._search_states[self._best_estimator].time2eval_best
if time_left < time_ensemble < 2 * time_left:
break
def _search(self):
# initialize the search_states
self._eci = []
self._state.best_loss = float("+inf")
self._state.time_from_start = 0
self._estimator_index = None
self._best_iteration = 0
self._time_taken_best_iter = 0
self._model_history = {}
self._config_history = {}
self._max_iter_per_learner = 1000000 # TODO
self._iter_per_learner = dict([(e, 0) for e in self.estimator_list])
self._fullsize_reached = False
self._trained_estimator = None
self._best_estimator = None
self._retrained_config = {}
self._warn_threshold = 10
self._selected = None
self.modelcount = 0
if not self._use_ray:
self._search_sequential()
else:
self._search_parallel()
# Add a checkpoint for the current best config to the log.
if self._training_log:
self._training_log.checkpoint()
if self._best_estimator:
self._selected = self._search_states[self._best_estimator]
self.modelcount = sum(
search_state.total_iter for search_state in self._search_states.values()
)
if self._trained_estimator:
logger.info(f"selected model: {self._trained_estimator.model}")
if self._ensemble and self._state.task in (
"binary",
"multi",
"regression",
):
search_states = list(
x for x in self._search_states.items() if x[1].best_config
)
search_states.sort(key=lambda x: x[1].best_loss)
estimators = [
(
x[0],
x[1].learner_class(
task=self._state.task,
n_jobs=self._state.n_jobs,
**x[1].best_config,
),
)
for x in search_states[:2]
]
estimators += [
(
x[0],
x[1].learner_class(
task=self._state.task,
n_jobs=self._state.n_jobs,
**x[1].best_config,
),
)
for x in search_states[2:]
if x[1].best_loss < 4 * self._selected.best_loss
]
logger.info(estimators)
if len(estimators) <= 1:
return
if self._state.task in CLASSIFICATION:
from sklearn.ensemble import StackingClassifier as Stacker
else:
from sklearn.ensemble import StackingRegressor as Stacker
if isinstance(self._ensemble, dict):
final_estimator = self._ensemble.get(
"final_estimator", self._trained_estimator
)
passthrough = self._ensemble.get("passthrough", True)
else:
final_estimator = self._trained_estimator
passthrough = True
stacker = Stacker(
estimators,
final_estimator,
n_jobs=self._state.n_jobs,
passthrough=passthrough,
)
if self._sample_weight_full is not None:
self._state.fit_kwargs["sample_weight"] = self._sample_weight_full
for e in estimators:
e[1].__class__.init()
try:
stacker.fit(
self._X_train_all, self._y_train_all, **self._state.fit_kwargs
)
logger.info(f"ensemble: {stacker}")
self._trained_estimator = stacker
self._trained_estimator.model = stacker
except ValueError as e:
if passthrough:
logger.warning(
"Using passthrough=False for ensemble because the data contain categorical features."
)
stacker = Stacker(
estimators,
final_estimator,
n_jobs=self._state.n_jobs,
passthrough=False,
)
stacker.fit(
self._X_train_all,
self._y_train_all,
**self._state.fit_kwargs,
)
logger.info(f"ensemble: {stacker}")
self._trained_estimator = stacker
self._trained_estimator.model = stacker
else:
raise e
elif self._retrain_final:
# reset time budget for retraining
if self._max_iter > 1:
self._state.time_from_start -= self._state.time_budget
if (
self._state.task == TS_FORECAST
or self._trained_estimator is None
or (
self._state.time_budget - self._state.time_from_start
> self._selected.est_retrain_time(self.data_size_full)
and self._selected.best_config_sample_size
== self._state.data_size
)
):
state = self._search_states[self._best_estimator]
(
self._trained_estimator,
retrain_time,
) = self._state._train_with_config(
self._best_estimator,
state.best_config,
self.data_size_full,
)
logger.info(
"retrain {} for {:.1f}s".format(
self._best_estimator, retrain_time
)
)
state.best_config_train_time = retrain_time
if self._trained_estimator:
logger.info(f"retrained model: {self._trained_estimator.model}")
else:
logger.info("not retraining because the time budget is too small.")
if self.model and mlflow is not None and mlflow.active_run():
mlflow.sklearn.log_model(self.model, "best_model")
def __del__(self):
if (
hasattr(self, "_trained_estimator")
and self._trained_estimator
and hasattr(self._trained_estimator, "cleanup")
):
self._trained_estimator.cleanup()
del self._trained_estimator
def _select_estimator(self, estimator_list):
if self._learner_selector == "roundrobin":
self._estimator_index += 1
if self._estimator_index == len(estimator_list):
self._estimator_index = 0
return estimator_list[self._estimator_index]
min_estimated_cost, selected = np.Inf, None
inv = []
untried_exists = False
for i, estimator in enumerate(estimator_list):
if estimator in self._search_states and (
self._search_states[estimator].sample_size
): # sample_size=None meaning no result
search_state = self._search_states[estimator]
if (
self._search_states[estimator].time2eval_best
> self._state.time_budget - self._state.time_from_start
or self._iter_per_learner[estimator] >= self._max_iter_per_learner
):
inv.append(0)
continue
estimated_cost = search_state.estimated_cost4improvement
if search_state.sample_size < self._state.data_size:
estimated_cost = min(
estimated_cost,
search_state.time2eval_best
* min(
SAMPLE_MULTIPLY_FACTOR,
self._state.data_size / search_state.sample_size,
),
)
gap = search_state.best_loss - self._state.best_loss
if gap > 0 and not self._ensemble:
delta_loss = (
search_state.best_loss_old - search_state.best_loss
) or search_state.best_loss
delta_time = (
search_state.total_time_used - search_state.time_best_found_old
) or 1e-10
speed = delta_loss / delta_time
if speed:
estimated_cost = max(2 * gap / speed, estimated_cost)
estimated_cost = estimated_cost or 1e-9
inv.append(1 / estimated_cost)
else:
estimated_cost = self._eci[i]
inv.append(0)
untried_exists = True
if estimated_cost < min_estimated_cost:
min_estimated_cost = estimated_cost
selected = estimator
if untried_exists or not selected:
state = self._search_states.get(selected)
if not (state and state.sample_size):
return selected
s = sum(inv)
p = self._random.rand()
q = 0
for i in range(len(inv)):
if inv[i]:
q += inv[i] / s
if p < q:
return estimator_list[i]