autogen/tutorials/flaml-tutorial-aaai-23.md
Qingyun Wu 3e6e834bbb
remove redundant doc and add tutorial (#1004)
* remove redundant doc and add tutorial

* add demos for pydata2023

* Update pydata23 docs

* remove redundant notebooks

* Move tutorial notebooks to notebook folder

* update readme and notebook links

* update notebook links

* update links

* update readme

---------

Co-authored-by: Li Jiang <lijiang1@microsoft.com>
Co-authored-by: Li Jiang <bnujli@gmail.com>
2023-05-27 02:59:51 +00:00

68 lines
4.9 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# AAAI 2023 Lab Forum - LSHP2: Automated Machine Learning & Tuning with FLAML
## Session Information
**Date and Time**: February 8, 2023 at 2-6pm ET.
Location: Walter E. Washington Convention Center, Washington DC, USA
Duration: 4 hours (3.5 hours + 0.5 hour break)
For the most up-to-date information, see the [AAAI'23 Program Agenda](https://aaai.org/Conferences/AAAI-23/aaai23tutorials/)
## [Lab Forum Slides](https://1drv.ms/b/s!Ao3suATqM7n7iokCQbF7jUUYwOqGqQ?e=cMnilV)
## What Will You Learn?
- What FLAML is and how to use FLAML to
- find accurate ML models with low computational resources for common ML tasks
- tune hyperparameters generically
- How to leverage the flexible and rich customization choices
- finish the last mile for deployment
- create new applications
- Code examples, demos, use cases
- Research & development opportunities
## Session Agenda
### **Part 1. Overview of FLAML**
- Overview of AutoML and FLAML
- Basic usages of FLAML
- Task-oriented AutoML
- [Documentation](https://microsoft.github.io/FLAML/docs/Use-Cases/Task-Oriented-AutoML)
- [Notebook: A classification task with AutoML](https://github.com/microsoft/FLAML/blob/tutorial-aaai23/notebook/automl_classification.ipynb); [Open In Colab](https://colab.research.google.com/github/microsoft/FLAML/blob/tutorial-aaai23/notebook/automl_classification.ipynb)
- Tune User-Defined-functions with FLAML
- [Documentation](https://microsoft.github.io/FLAML/docs/Use-Cases/Tune-User-Defined-Function)
- [Notebook: Tune user-defined function](https://github.com/microsoft/FLAML/blob/tutorial-aaai23/notebook/tune_demo.ipynb); [Open In Colab](https://colab.research.google.com/github/microsoft/FLAML/blob/tutorial-aaai23/notebook/tune_demo.ipynb)
- Zero-shot AutoML
- [Documentation](https://microsoft.github.io/FLAML/docs/Use-Cases/Zero-Shot-AutoML)
- [Notebook: Zeroshot AutoML](https://github.com/microsoft/FLAML/blob/tutorial-aaai23/notebook/zeroshot_lightgbm.ipynb); [Open In Colab](https://colab.research.google.com/github/microsoft/FLAML/blob/tutorial-aaai23/notebook/zeroshot_lightgbm.ipynb)
- [ML.NET demo](https://learn.microsoft.com/dotnet/machine-learning/tutorials/predict-prices-with-model-builder)
Break (15m)
### **Part 2. Deep Dive into FLAML**
- The Science Behind FLAMLs Success
- [Economical hyperparameter optimization methods in FLAML](https://microsoft.github.io/FLAML/docs/Use-Cases/Tune-User-Defined-Function/#hyperparameter-optimization-algorithm)
- [Other research in FLAML](https://microsoft.github.io/FLAML/docs/Research)
- Maximize the Power of FLAML through Customization and Advanced Functionalities
- [Notebook: Customize your AutoML with FLAML](https://github.com/microsoft/FLAML/blob/tutorial-aaai23/notebook/customize_your_automl_with_flaml.ipynb); [Open In Colab](https://colab.research.google.com/github/microsoft/FLAML/blob/tutorial-aaai23/notebook/customize_your_automl_with_flaml.ipynb)
- [Notebook: Further acceleration of AutoML with FLAML](https://github.com/microsoft/FLAML/blob/tutorial-aaai23/notebook/further_acceleration_of_automl_with_flaml.ipynb); [Open In Colab](https://colab.research.google.com/github/microsoft/FLAML/blob/tutorial-aaai23/notebook/further_acceleration_of_automl_with_flaml.ipynb)
- [Notebook: Neural network model tuning with FLAML ](https://github.com/microsoft/FLAML/blob/tutorial-aaai23/notebook/tune_pytorch.ipynb); [Open In Colab](https://colab.research.google.com/github/microsoft/FLAML/blob/tutorial-aaai23/notebook/tune_pytorch.ipynb)
### **Part 3. New features in FLAML**
- Natural language processing
- [Notebook: AutoML for NLP tasks](https://github.com/microsoft/FLAML/blob/tutorial-aaai23/notebook/automl_nlp.ipynb); [Open In Colab](https://colab.research.google.com/github/microsoft/FLAML/blob/tutorial-aaai23/notebook/automl_nlp.ipynb)
- Time Series Forecasting
- [Notebook: AutoML for Time Series Forecast tasks](https://github.com/microsoft/FLAML/blob/tutorial-aaai23/notebook/automl_time_series_forecast.ipynb); [Open In Colab](https://colab.research.google.com/github/microsoft/FLAML/blob/tutorial-aaai23/notebook/automl_time_series_forecast.ipynb)
- Targeted Hyperparameter Optimization With Lexicographic Objectives
- [Documentation](https://microsoft.github.io/FLAML/docs/Use-Cases/Tune-User-Defined-Function/#lexicographic-objectives)
- [Notebook: Find accurate and fast neural networks with lexicographic objectives](https://github.com/microsoft/FLAML/blob/tutorial-aaai23/notebook/tune_lexicographic.ipynb); [Open In Colab](https://colab.research.google.com/github/microsoft/FLAML/blob/tutorial-aaai23/notebook/tune_lexicographic.ipynb)
- Online AutoML
- [Notebook: Online AutoML with Vowpal Wabbit](https://github.com/microsoft/FLAML/blob/tutorial-aaai23/notebook/autovw.ipynb); [Open In Colab](https://colab.research.google.com/github/microsoft/FLAML/blob/tutorial-aaai23/notebook/autovw.ipynb)
- Fair AutoML
### Challenges and open problems