mirror of
https://github.com/microsoft/autogen.git
synced 2025-08-02 13:52:39 +00:00

* warning -> info for low cost partial config #195, #110 * when n_estimators < 0, use trained_estimator's * log debug info * test random seed * remove "objective"; avoid ZeroDivisionError * hp config to estimator params * check type of searcher * default n_jobs * try import * Update searchalgo_auto.py * CLASSIFICATION * auto_augment flag * min_sample_size * make catboost optional
106 lines
3.9 KiB
Python
106 lines
3.9 KiB
Python
from flaml.tune.space import unflatten_hierarchical
|
|
from flaml import AutoML
|
|
from sklearn.datasets import fetch_california_housing
|
|
import os
|
|
import unittest
|
|
import logging
|
|
import tempfile
|
|
import io
|
|
|
|
|
|
class TestLogging(unittest.TestCase):
|
|
def test_logging_level(self):
|
|
|
|
from flaml import logger, logger_formatter
|
|
|
|
with tempfile.TemporaryDirectory() as d:
|
|
|
|
training_log = os.path.join(d, "training.log")
|
|
|
|
# Configure logging for the FLAML logger
|
|
# and add a handler that outputs to a buffer.
|
|
logger.setLevel(logging.INFO)
|
|
buf = io.StringIO()
|
|
ch = logging.StreamHandler(buf)
|
|
ch.setFormatter(logger_formatter)
|
|
logger.addHandler(ch)
|
|
|
|
# Run a simple job.
|
|
automl = AutoML()
|
|
automl_settings = {
|
|
"time_budget": 1,
|
|
"metric": "rmse",
|
|
"task": "regression",
|
|
"log_file_name": training_log,
|
|
"log_training_metric": True,
|
|
"n_jobs": 1,
|
|
"model_history": True,
|
|
"keep_search_state": True,
|
|
"learner_selector": "roundrobin",
|
|
}
|
|
X_train, y_train = fetch_california_housing(return_X_y=True)
|
|
n = len(y_train) >> 1
|
|
print(automl.model, automl.classes_, automl.predict(X_train))
|
|
automl.fit(
|
|
X_train=X_train[:n],
|
|
y_train=y_train[:n],
|
|
X_val=X_train[n:],
|
|
y_val=y_train[n:],
|
|
**automl_settings
|
|
)
|
|
logger.info(automl.search_space)
|
|
logger.info(automl.low_cost_partial_config)
|
|
logger.info(automl.points_to_evaluate)
|
|
logger.info(automl.cat_hp_cost)
|
|
import optuna as ot
|
|
|
|
study = ot.create_study()
|
|
from flaml.tune.space import define_by_run_func, add_cost_to_space
|
|
|
|
sample = define_by_run_func(study.ask(), automl.search_space)
|
|
logger.info(sample)
|
|
logger.info(unflatten_hierarchical(sample, automl.search_space))
|
|
add_cost_to_space(
|
|
automl.search_space, automl.low_cost_partial_config, automl.cat_hp_cost
|
|
)
|
|
logger.info(automl.search_space["ml"].categories)
|
|
config = automl.best_config.copy()
|
|
config["learner"] = automl.best_estimator
|
|
automl.trainable({"ml": config})
|
|
from flaml import tune, BlendSearch
|
|
from flaml.automl import size
|
|
from functools import partial
|
|
|
|
search_alg = BlendSearch(
|
|
metric="val_loss",
|
|
mode="min",
|
|
space=automl.search_space,
|
|
low_cost_partial_config=automl.low_cost_partial_config,
|
|
points_to_evaluate=automl.points_to_evaluate,
|
|
cat_hp_cost=automl.cat_hp_cost,
|
|
prune_attr=automl.prune_attr,
|
|
min_resource=automl.min_resource,
|
|
max_resource=automl.max_resource,
|
|
config_constraints=[
|
|
(partial(size, automl._state), "<=", automl._mem_thres)
|
|
],
|
|
metric_constraints=automl.metric_constraints,
|
|
)
|
|
analysis = tune.run(
|
|
automl.trainable,
|
|
search_alg=search_alg, # verbose=2,
|
|
time_budget_s=1,
|
|
num_samples=-1,
|
|
)
|
|
print(min(trial.last_result["val_loss"] for trial in analysis.trials))
|
|
config = analysis.trials[-1].last_result["config"]["ml"]
|
|
automl._state._train_with_config(config["learner"], config)
|
|
# Check if the log buffer is populated.
|
|
self.assertTrue(len(buf.getvalue()) > 0)
|
|
|
|
import pickle
|
|
|
|
with open("automl.pkl", "wb") as f:
|
|
pickle.dump(automl, f, pickle.HIGHEST_PROTOCOL)
|
|
print(automl.__version__)
|