autogen/website/docs/Installation.md
Chi Wang c45741a67b
support latest xgboost version (#599)
* support latest xgboost version

* Update test_classification.py

* Update 

Exists problems when installing xgb1.6.1 in py3.6

* cleanup

* xgboost version

* remove time_budget_s in test

* remove redundancy

* stop support of python 3.6

Co-authored-by: zsk <shaokunzhang529@gmail.com>
Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu>
2022-06-21 18:59:07 -07:00

69 lines
1.1 KiB
Markdown

# Installation
FLAML requires **Python version >= 3.7**. It can be installed from pip:
```bash
pip install flaml
```
or conda:
```
conda install flaml -c conda-forge
```
FLAML has a .NET implementation as well from [ML.NET Model Builder](https://dotnet.microsoft.com/apps/machinelearning-ai/ml-dotnet/model-builder) in [Visual Studio](https://visualstudio.microsoft.com/) 2022.
## Optional Dependencies
### Notebook
To run the [notebook examples](https://github.com/microsoft/FLAML/tree/main/notebook),
install flaml with the [notebook] option:
```bash
pip install flaml[notebook]
```
### Extra learners
* catboost
```bash
pip install flaml[catboost]
```
* vowpal wabbit
```bash
pip install flaml[vw]
```
* time series forecaster: prophet, statsmodels
```bash
pip install flaml[forecast]
```
* natural language processing: transformers
```bash
pip install flaml[nlp]
```
### Distributed tuning
* ray
```bash
pip install flaml[ray]
```
* nni
```bash
pip install flaml[nni]
```
* blendsearch
```bash
pip install flaml[blendsearch]
```
### Test and Benchmark
* test
```bash
pip install flaml[test]
```
* benchmark
```bash
pip install flaml[benchmark]
```