361 lines
13 KiB
JavaScript
Raw Normal View History

import fs from 'fs';
import path from 'path';
import chalk from 'chalk';
import boxen from 'boxen';
import { z } from 'zod';
import {
log,
writeJSON,
enableSilentMode,
disableSilentMode,
isSilentMode,
readJSON,
findTaskById
} from '../utils.js';
import { generateObjectService } from '../ai-services-unified.js';
import { getDebugFlag } from '../config-manager.js';
import generateTaskFiles from './generate-task-files.js';
import { displayAiUsageSummary } from '../ui.js';
// Define the Zod schema for a SINGLE task object
const prdSingleTaskSchema = z.object({
id: z.number().int().positive(),
title: z.string().min(1),
description: z.string().min(1),
details: z.string().optional().default(''),
testStrategy: z.string().optional().default(''),
priority: z.enum(['high', 'medium', 'low']).default('medium'),
dependencies: z.array(z.number().int().positive()).optional().default([]),
status: z.string().optional().default('pending')
});
// Define the Zod schema for the ENTIRE expected AI response object
const prdResponseSchema = z.object({
tasks: z.array(prdSingleTaskSchema),
metadata: z.object({
projectName: z.string(),
totalTasks: z.number(),
sourceFile: z.string(),
generatedAt: z.string()
})
});
/**
* Parse a PRD file and generate tasks
* @param {string} prdPath - Path to the PRD file
* @param {string} tasksPath - Path to the tasks.json file
* @param {number} numTasks - Number of tasks to generate
* @param {Object} options - Additional options
* @param {boolean} [options.force=false] - Whether to overwrite existing tasks.json.
* @param {boolean} [options.append=false] - Append to existing tasks file.
* @param {Object} [options.reportProgress] - Function to report progress (optional, likely unused).
* @param {Object} [options.mcpLog] - MCP logger object (optional).
* @param {Object} [options.session] - Session object from MCP server (optional).
* @param {string} [options.projectRoot] - Project root path (for MCP/env fallback).
* @param {string} [outputFormat='text'] - Output format ('text' or 'json').
*/
async function parsePRD(prdPath, tasksPath, numTasks, options = {}) {
const {
reportProgress,
mcpLog,
session,
projectRoot,
force = false,
append = false
} = options;
const isMCP = !!mcpLog;
const outputFormat = isMCP ? 'json' : 'text';
const logFn = mcpLog
? mcpLog
: {
// Wrapper for CLI
info: (...args) => log('info', ...args),
warn: (...args) => log('warn', ...args),
error: (...args) => log('error', ...args),
debug: (...args) => log('debug', ...args),
success: (...args) => log('success', ...args)
};
// Create custom reporter using logFn
const report = (message, level = 'info') => {
// Check logFn directly
if (logFn && typeof logFn[level] === 'function') {
logFn[level](message);
} else if (!isSilentMode() && outputFormat === 'text') {
// Fallback to original log only if necessary and in CLI text mode
log(level, message);
}
};
report(`Parsing PRD file: ${prdPath}, Force: ${force}, Append: ${append}`);
let existingTasks = [];
let nextId = 1;
let aiServiceResponse = null;
try {
// Handle file existence and overwrite/append logic
if (fs.existsSync(tasksPath)) {
if (append) {
report(
`Append mode enabled. Reading existing tasks from ${tasksPath}`,
'info'
);
const existingData = readJSON(tasksPath); // Use readJSON utility
if (existingData && Array.isArray(existingData.tasks)) {
existingTasks = existingData.tasks;
if (existingTasks.length > 0) {
nextId = Math.max(...existingTasks.map((t) => t.id || 0)) + 1;
report(
`Found ${existingTasks.length} existing tasks. Next ID will be ${nextId}.`,
'info'
);
}
} else {
report(
`Could not read existing tasks from ${tasksPath} or format is invalid. Proceeding without appending.`,
'warn'
);
existingTasks = []; // Reset if read fails
}
} else if (!force) {
// Not appending and not forcing overwrite
const overwriteError = new Error(
`Output file ${tasksPath} already exists. Use --force to overwrite or --append.`
);
report(overwriteError.message, 'error');
if (outputFormat === 'text') {
console.error(chalk.red(overwriteError.message));
process.exit(1);
} else {
throw overwriteError;
}
} else {
// Force overwrite is true
report(
`Force flag enabled. Overwriting existing file: ${tasksPath}`,
'info'
);
}
}
report(`Reading PRD content from ${prdPath}`, 'info');
const prdContent = fs.readFileSync(prdPath, 'utf8');
if (!prdContent) {
throw new Error(`Input file ${prdPath} is empty or could not be read.`);
}
// Build system prompt for PRD parsing
const systemPrompt = `You are an AI assistant specialized in analyzing Product Requirements Documents (PRDs) and generating a structured, logically ordered, dependency-aware and sequenced list of development tasks in JSON format.
Analyze the provided PRD content and generate approximately ${numTasks} top-level development tasks. If the complexity or the level of detail of the PRD is high, generate more tasks relative to the complexity of the PRD
Each task should represent a logical unit of work needed to implement the requirements and focus on the most direct and effective way to implement the requirements without unnecessary complexity or overengineering. Include pseudo-code, implementation details, and test strategy for each task. Find the most up to date information to implement each task.
Assign sequential IDs starting from ${nextId}. Infer title, description, details, and test strategy for each task based *only* on the PRD content.
Set status to 'pending', dependencies to an empty array [], and priority to 'medium' initially for all tasks.
Respond ONLY with a valid JSON object containing a single key "tasks", where the value is an array of task objects adhering to the provided Zod schema. Do not include any explanation or markdown formatting.
Each task should follow this JSON structure:
{
"id": number,
"title": string,
"description": string,
"status": "pending",
"dependencies": number[] (IDs of tasks this depends on),
"priority": "high" | "medium" | "low",
"details": string (implementation details),
"testStrategy": string (validation approach)
}
Guidelines:
1. Unless complexity warrants otherwise, create exactly ${numTasks} tasks, numbered sequentially starting from ${nextId}
2. Each task should be atomic and focused on a single responsibility following the most up to date best practices and standards
3. Order tasks logically - consider dependencies and implementation sequence
4. Early tasks should focus on setup, core functionality first, then advanced features
5. Include clear validation/testing approach for each task
6. Set appropriate dependency IDs (a task can only depend on tasks with lower IDs, potentially including existing tasks with IDs less than ${nextId} if applicable)
7. Assign priority (high/medium/low) based on criticality and dependency order
8. Include detailed implementation guidance in the "details" field
9. If the PRD contains specific requirements for libraries, database schemas, frameworks, tech stacks, or any other implementation details, STRICTLY ADHERE to these requirements in your task breakdown and do not discard them under any circumstance
10. Focus on filling in any gaps left by the PRD or areas that aren't fully specified, while preserving all explicit requirements
11. Always aim to provide the most direct path to implementation, avoiding over-engineering or roundabout approaches`;
// Build user prompt with PRD content
const userPrompt = `Here's the Product Requirements Document (PRD) to break down into approximately ${numTasks} tasks, starting IDs from ${nextId}:\n\n${prdContent}\n\n
Return your response in this format:
{
"tasks": [
{
"id": 1,
"title": "Setup Project Repository",
"description": "...",
...
},
...
],
"metadata": {
"projectName": "PRD Implementation",
"totalTasks": ${numTasks},
"sourceFile": "${prdPath}",
"generatedAt": "YYYY-MM-DD"
}
}`;
// Call the unified AI service
report('Calling AI service to generate tasks from PRD...', 'info');
// Call generateObjectService with the CORRECT schema and additional telemetry params
aiServiceResponse = await generateObjectService({
role: 'main',
session: session,
projectRoot: projectRoot,
schema: prdResponseSchema,
objectName: 'tasks_data',
systemPrompt: systemPrompt,
prompt: userPrompt,
commandName: 'parse-prd',
outputType: isMCP ? 'mcp' : 'cli'
});
// Create the directory if it doesn't exist
const tasksDir = path.dirname(tasksPath);
if (!fs.existsSync(tasksDir)) {
fs.mkdirSync(tasksDir, { recursive: true });
}
logFn.success('Successfully parsed PRD via AI service.\n');
// Validate and Process Tasks
// const generatedData = aiServiceResponse?.mainResult?.object;
// Robustly get the actual AI-generated object
let generatedData = null;
if (aiServiceResponse?.mainResult) {
if (
typeof aiServiceResponse.mainResult === 'object' &&
aiServiceResponse.mainResult !== null &&
'tasks' in aiServiceResponse.mainResult
) {
// If mainResult itself is the object with a 'tasks' property
generatedData = aiServiceResponse.mainResult;
} else if (
typeof aiServiceResponse.mainResult.object === 'object' &&
aiServiceResponse.mainResult.object !== null &&
'tasks' in aiServiceResponse.mainResult.object
) {
// If mainResult.object is the object with a 'tasks' property
generatedData = aiServiceResponse.mainResult.object;
}
}
if (!generatedData || !Array.isArray(generatedData.tasks)) {
logFn.error(
`Internal Error: generateObjectService returned unexpected data structure: ${JSON.stringify(generatedData)}`
);
throw new Error(
'AI service returned unexpected data structure after validation.'
);
}
let currentId = nextId;
const taskMap = new Map();
const processedNewTasks = generatedData.tasks.map((task) => {
const newId = currentId++;
taskMap.set(task.id, newId);
return {
...task,
id: newId,
status: 'pending',
priority: task.priority || 'medium',
dependencies: Array.isArray(task.dependencies) ? task.dependencies : [],
subtasks: []
};
});
// Remap dependencies for the NEWLY processed tasks
processedNewTasks.forEach((task) => {
task.dependencies = task.dependencies
.map((depId) => taskMap.get(depId)) // Map old AI ID to new sequential ID
.filter(
(newDepId) =>
newDepId != null && // Must exist
newDepId < task.id && // Must be a lower ID (could be existing or newly generated)
(findTaskById(existingTasks, newDepId) || // Check if it exists in old tasks OR
processedNewTasks.some((t) => t.id === newDepId)) // check if it exists in new tasks
);
});
const finalTasks = append
? [...existingTasks, ...processedNewTasks]
: processedNewTasks;
const outputData = { tasks: finalTasks };
// Write the final tasks to the file
writeJSON(tasksPath, outputData);
report(
`Successfully ${append ? 'appended' : 'generated'} ${processedNewTasks.length} tasks in ${tasksPath}`,
'success'
);
// Generate markdown task files after writing tasks.json
await generateTaskFiles(tasksPath, path.dirname(tasksPath), { mcpLog });
// Handle CLI output (e.g., success message)
if (outputFormat === 'text') {
console.log(
boxen(
chalk.green(
`Successfully generated ${processedNewTasks.length} new tasks. Total tasks in ${tasksPath}: ${finalTasks.length}`
),
{ padding: 1, borderColor: 'green', borderStyle: 'round' }
)
);
console.log(
boxen(
chalk.white.bold('Next Steps:') +
'\n\n' +
`${chalk.cyan('1.')} Run ${chalk.yellow('task-master list')} to view all tasks\n` +
`${chalk.cyan('2.')} Run ${chalk.yellow('task-master expand --id=<id>')} to break down a task into subtasks`,
{
padding: 1,
borderColor: 'cyan',
borderStyle: 'round',
margin: { top: 1 }
}
)
);
if (aiServiceResponse && aiServiceResponse.telemetryData) {
displayAiUsageSummary(aiServiceResponse.telemetryData, 'cli');
}
}
// Return telemetry data
return {
success: true,
tasksPath,
telemetryData: aiServiceResponse?.telemetryData
};
} catch (error) {
report(`Error parsing PRD: ${error.message}`, 'error');
// Only show error UI for text output (CLI)
if (outputFormat === 'text') {
console.error(chalk.red(`Error: ${error.message}`));
if (getDebugFlag(projectRoot)) {
// Use projectRoot for debug flag check
console.error(error);
}
process.exit(1);
} else {
throw error; // Re-throw for JSON output
}
}
}
export default parsePRD;