Ralph Khreish 72502416c6
chore: v0.17 features and improvements (#771)
* chore: task management and small bug fix.

* chore: task management

* feat: implement research command with enhanced context gathering - Add comprehensive research command with AI-powered queries - Implement ContextGatherer utility for reusable context extraction - Support multiple context types: tasks, files, custom text, project tree - Add fuzzy search integration for automatic task discovery - Implement detailed token breakdown display with syntax highlighting - Add enhanced UI with boxed output and code block formatting - Support different detail levels (low, medium, high) for responses - Include project-specific context for more relevant AI responses - Add token counting with gpt-tokens library integration - Create reusable patterns for future context-aware commands - Task 94.4 completed

* docs: add context gathering rule and update existing rules

- Create comprehensive context_gathering.mdc rule documenting ContextGatherer utility patterns, FuzzyTaskSearch integration, token breakdown display, code block syntax highlighting, and enhanced result display patterns
- Update new_features.mdc to include context gathering step
- Update commands.mdc with context-aware command pattern
- Update ui.mdc with enhanced display patterns and syntax highlighting
- Update utilities.mdc to document new context gathering utilities
- Update glossary.mdc to include new context_gathering rule
- Establishes standardized patterns for building intelligent, context-aware commands that can leverage project knowledge for better AI assistance

* feat(fuzzy): improves fuzzy search to introspect into subtasks as well. might still need improvement.

* fix(move): adjusts logic to prevent an issue when moving from parent to subtask if the target parent has no subtasks.

* fix(move-task): Fix critical bugs in task move functionality

- Fixed parent-to-parent task moves where original task would remain as duplicate
- Fixed moving tasks to become subtasks of empty parents (validation errors)
- Fixed moving subtasks between different parent tasks
- Improved comma-separated batch moves with proper error handling
- Updated MCP tool to use core logic instead of custom implementation
- Resolves task duplication issues and enables proper task hierarchy reorganization

* feat(research): Add subtasks to fuzzy search and follow-up questions

- Enhanced fuzzy search to include subtasks in discovery - Added interactive follow-up question functionality using inquirer
- Improved context discovery by including both tasks and subtasks
- Follow-up option for research with default to 'n' for quick workflow

* chore: removes task004 chat that had like 11k lines lol.

* chore: formatting

* feat(show): add comma-separated ID support for multi-task viewing

- Enhanced get-task/show command to support comma-separated task IDs for efficient batch operations.
- New features include multiple task retrieval, smart display logic, interactive action menu with batch operations, MCP array response for AI agent efficiency, and support for mixed parent tasks and subtasks.
- Implementation includes updated CLI show command, enhanced MCP get_task tool, modified showTaskDirect function, and maintained full backward compatibility.
- Documentation updated across all relevant files.

Benefits include faster context gathering for AI agents, improved workflow with interactive batch operations, better UX with responsive layout, and enhanced API efficiency.

* feat(research): Adds MCP tool for  command

- New MCP Tool: research tool enables AI-powered research with project context
- Context Integration: Supports task IDs, file paths, custom context, and project tree
- Fuzzy Task Discovery: Automatically finds relevant tasks using semantic search
- Token Management: Detailed token counting and breakdown by context type
- Multiple Detail Levels: Support for low, medium, and high detail research responses
- Telemetry Integration: Full cost tracking and usage analytics
- Direct Function: researchDirect with comprehensive parameter validation
- Silent Mode: Prevents console output interference with MCP JSON responses
- Error Handling: Robust error handling with proper MCP response formatting

This completes subtasks 94.5 (Direct Function) and 94.6 (MCP Tool) for the research command implementation, providing a powerful research interface for integrated development environments like Cursor.

Updated documentation across taskmaster.mdc, README.md, command-reference.md, examples.md, tutorial.md, and docs/README.md to highlight research capabilities and usage patterns.

* chore: task management

* chore: task management and removes mistakenly staged changes

* fix(move): Fix move command bug that left duplicate tasks

- Fixed logic in moveTaskToNewId function that was incorrectly treating task-to-task moves as subtask creation instead of task replacement
- Updated moveTaskToNewId to properly handle replacing existing destination tasks instead of just placeholders
- The move command now correctly replaces destination tasks and cleans up properly without leaving duplicates

- Task Management: Moved task 93 (Google Vertex AI Provider) to position 88, Moved task 94 (Azure OpenAI Provider) to position 89, Updated task dependencies and regenerated task files, Cleaned up orphaned task files automatically
- All important validations remain in place: Prevents moving tasks to themselves, Prevents moving parent tasks to their own subtasks, Prevents circular dependencies
- Resolves the issue where moving tasks would leave both source and destination tasks in tasks.json and file system

* chore: formatting

* feat: Add .taskmaster directory (#619)

* chore: apply requested changes from next branch (#629)

* chore: rc version bump

* chore: cleanup migration-guide

* fix: bedrock set model and other fixes (#641)

* Fix: MCP log errors (#648)

* fix: projectRoot duplicate .taskmaster directory (#655)

* Version Packages

* chore: add package-lock.json

* Version Packages

* Version Packages

* fix: markdown format (#622)

* Version Packages

* Version Packages

* Fixed the Typo in cursor rules Issue:#675 (#677)

Fixed the typo in the Api keys

* Add one-click MCP server installation for Cursor (#671)

* Update README.md - Remove trailing commas (#673)

JSON doesn't allow for trailing commas, so these need to be removed in order for this to work

* chore: rc version bump

* fix: findTasksPath function

* fix: update MCP tool

* feat(ui): replace emoji complexity indicators with clean filled circle characters

Replace 🟢, 🟡, 🔴 emojis with ● character in getComplexityWithColor function

Update corresponding unit tests to expect ● instead of emojis

Improves UI continuity

* fix(ai-providers): change generateObject mode from 'tool' to 'auto' for better provider compatibility

Fixes Perplexity research role failing with 'tool-mode object generation' error

The hardcoded 'tool' mode was incompatible with providers like Perplexity that support structured JSON output but not function calling/tool use

Using 'auto' mode allows the AI SDK to choose the best approach for each provider

* Adds qwen3-235n-a22b:free to supported models. Closes #687)

* chore: adds a warning when custom openrouter model is a free model which suffers from lower rate limits, restricted context, and, worst of all, no access to tool_use.

* refactor: enhance add-task fuzzy search and fix duplicate banner display

- **Remove hardcoded category system** in add-task that always matched 'Task management'
- **Eliminate arbitrary limits** in fuzzy search results (5→25 high relevance, 3→10 medium relevance, 8→20 detailed tasks)
- **Improve semantic weighting** in Fuse.js search (details=3, description=2, title=1.5) for better relevance
- **Fix duplicate banner issue** by removing console.clear() and redundant displayBanner() calls from UI functions
- **Enhance context generation** to rely on semantic similarity rather than rigid pattern matching
- **Preserve terminal history** to address GitHub issue #553 about eating terminal lines
- **Remove displayBanner() calls** from: displayHelp, displayNextTask, displayTaskById, displayComplexityReport, set-task-status, clear-subtasks, dependency-manager functions

The add-task system now provides truly relevant task context based on semantic similarity rather than arbitrary categories and limits, while maintaining a cleaner terminal experience.

Changes span: add-task.js, ui.js, set-task-status.js, clear-subtasks.js, list-tasks.js, dependency-manager.js

Closes #553

* chore: changeset

* chore: passes tests and linting

* chore: more linting

* ninja(sync): add sync-readme command for GitHub README export with UTM tracking and professional markdown formatting. Experimental

* chore: changeset adjustment

* docs: Auto-update and format models.md

* chore: updates readme with npm download badges and mentions AI Jason who is joining the taskmaster core team.

* chore: fixes urls in readme npm packages

* chore: fixes urls in readme npm packages again

* fix: readme typo

* readme: fix twitter urls.

* readme: removes the taskmaster list output which is too overwhelming given its size with subtasks. may re-add later. fixes likely issues in the json for manual config in cursor and windsurf in the readme.

* chore: small readme nitpicks

* chore: adjusts changeset from minor to patch to avoid version bump to 0.17

* readme: moves up the documentation links higher up in the readme. same with the cursor one-click install.

* Fix Cursor deeplink installation with copy-paste instructions (#723)

* solve merge conflics with next. not gonna deal with these much longer.

* chore: update task files during rebase

* chore: task management

* feat: implement research command with enhanced context gathering - Add comprehensive research command with AI-powered queries - Implement ContextGatherer utility for reusable context extraction - Support multiple context types: tasks, files, custom text, project tree - Add fuzzy search integration for automatic task discovery - Implement detailed token breakdown display with syntax highlighting - Add enhanced UI with boxed output and code block formatting - Support different detail levels (low, medium, high) for responses - Include project-specific context for more relevant AI responses - Add token counting with gpt-tokens library integration - Create reusable patterns for future context-aware commands - Task 94.4 completed

* fix(move): adjusts logic to prevent an issue when moving from parent to subtask if the target parent has no subtasks.

* fix(move-task): Fix critical bugs in task move functionality

- Fixed parent-to-parent task moves where original task would remain as duplicate
- Fixed moving tasks to become subtasks of empty parents (validation errors)
- Fixed moving subtasks between different parent tasks
- Improved comma-separated batch moves with proper error handling
- Updated MCP tool to use core logic instead of custom implementation
- Resolves task duplication issues and enables proper task hierarchy reorganization

* chore: removes task004 chat that had like 11k lines lol.

* feat(show): add comma-separated ID support for multi-task viewing

- Enhanced get-task/show command to support comma-separated task IDs for efficient batch operations.
- New features include multiple task retrieval, smart display logic, interactive action menu with batch operations, MCP array response for AI agent efficiency, and support for mixed parent tasks and subtasks.
- Implementation includes updated CLI show command, enhanced MCP get_task tool, modified showTaskDirect function, and maintained full backward compatibility.
- Documentation updated across all relevant files.

Benefits include faster context gathering for AI agents, improved workflow with interactive batch operations, better UX with responsive layout, and enhanced API efficiency.

* feat(research): Adds MCP tool for  command

- New MCP Tool: research tool enables AI-powered research with project context
- Context Integration: Supports task IDs, file paths, custom context, and project tree
- Fuzzy Task Discovery: Automatically finds relevant tasks using semantic search
- Token Management: Detailed token counting and breakdown by context type
- Multiple Detail Levels: Support for low, medium, and high detail research responses
- Telemetry Integration: Full cost tracking and usage analytics
- Direct Function: researchDirect with comprehensive parameter validation
- Silent Mode: Prevents console output interference with MCP JSON responses
- Error Handling: Robust error handling with proper MCP response formatting

This completes subtasks 94.5 (Direct Function) and 94.6 (MCP Tool) for the research command implementation, providing a powerful research interface for integrated development environments like Cursor.

Updated documentation across taskmaster.mdc, README.md, command-reference.md, examples.md, tutorial.md, and docs/README.md to highlight research capabilities and usage patterns.

* chore: task management

* fix(move): Fix move command bug that left duplicate tasks

- Fixed logic in moveTaskToNewId function that was incorrectly treating task-to-task moves as subtask creation instead of task replacement
- Updated moveTaskToNewId to properly handle replacing existing destination tasks instead of just placeholders
- The move command now correctly replaces destination tasks and cleans up properly without leaving duplicates

- Task Management: Moved task 93 (Google Vertex AI Provider) to position 88, Moved task 94 (Azure OpenAI Provider) to position 89, Updated task dependencies and regenerated task files, Cleaned up orphaned task files automatically
- All important validations remain in place: Prevents moving tasks to themselves, Prevents moving parent tasks to their own subtasks, Prevents circular dependencies
- Resolves the issue where moving tasks would leave both source and destination tasks in tasks.json and file system

* chore: moves to new task master config setup

* feat: add comma-separated status filtering to list-tasks

- supports multiple statuses like 'blocked,deferred' with comprehensive test coverage and backward compatibility

- also adjusts biome.json to stop bitching about templating.

* chore: linting ffs

* fix(generate): Fix generate command creating tasks in legacy location

- Update generate command default output directory from 'tasks' to '.taskmaster/tasks'
- Fix path.dirname() usage to properly derive output directory from tasks file location
- Update MCP tool description and documentation to reflect new structure
- Disable Biome linting rules for noUnusedTemplateLiteral and useArrowFunction
- Fixes issue where generate command was creating task files in the old 'tasks/' directory instead of the new '.taskmaster/tasks/' structure after the refactor

* chore: task management

* chore: task management some more

* fix(get-task): makes the projectRoot argument required to prevent errors when getting tasks.

* feat(tags): Implement tagged task lists migration system (Part 1/2)

This commit introduces the foundational infrastructure for tagged task lists,
enabling multi-context task management without remote storage to prevent merge conflicts.

CORE ARCHITECTURE:
• Silent migration system transforms tasks.json from old format { "tasks": [...] }
  to new tagged format { "master": { "tasks": [...] } }
• Tag resolution layer provides complete backward compatibility - existing code continues to work
• Automatic configuration and state management for seamless user experience

SILENT MIGRATION SYSTEM:
• Automatic detection and migration of legacy tasks.json format
• Complete project migration: tasks.json + config.json + state.json
• Transparent tag resolution returns old format to maintain compatibility
• Zero breaking changes - all existing functionality preserved

CONFIGURATION MANAGEMENT:
• Added global.defaultTag setting (defaults to 'master')
• New tags section with gitIntegration placeholders for future features
• Automatic config.json migration during first run
• Proper state.json creation with migration tracking

USER EXPERIENCE:
• Clean, one-time FYI notice after migration (no emojis, professional styling)
• Notice appears after 'Suggested Next Steps' and is tracked in state.json
• Silent operation - users unaware migration occurred unless explicitly shown

TECHNICAL IMPLEMENTATION:
• Enhanced readJSON() with automatic migration detection and processing
• New utility functions: getCurrentTag(), resolveTag(), getTasksForTag(), setTasksForTag()
• Complete migration orchestration via performCompleteTagMigration()
• Robust error handling and fallback mechanisms

BACKWARD COMPATIBILITY:
• 100% backward compatibility maintained
• Existing CLI commands and MCP tools continue to work unchanged
• Legacy tasks.json format automatically upgraded on first read
• All existing workflows preserved

TESTING VERIFIED:
• Complete migration from legacy state works correctly
• Config.json properly updated with tagged system settings
• State.json created with correct initial values
• Migration notice system functions as designed
• All existing functionality continues to work normally

Part 2 will implement tag management commands (add-tag, use-tag, list-tags)
and MCP tool updates for full tagged task system functionality.

Related: Task 103 - Implement Tagged Task Lists System for Multi-Context Task Management

* docs: Update documentation and rules for tagged task lists system

- Updated task-structure.md with comprehensive tagged format explanation
- Updated all .cursor/rules/*.mdc files to reflect tagged system
- Completed subtask 103.16: Update Documentation for Tagged Task Lists System

* feat(mcp): Add tagInfo to responses and integrate ContextGatherer

Enhances the MCP server to include 'tagInfo' (currentTag, availableTags) in all tool responses, providing better client-side context.

- Introduces a new 'ContextGatherer' utility to standardize the collection of file, task, and project context for AI-powered commands. This refactors several task-manager modules ('expand-task', 'research', 'update-task', etc.) to use the new utility.

- Fixes an issue in 'get-task' and 'get-tasks' MCP tools where the 'projectRoot' was not being passed correctly, preventing tag information from being included in their responses.

- Adds subtask '103.17' to track the implementation of the task template importing feature.

- Updates documentation ('.cursor/rules', 'docs/') to align with the new tagged task system and context gatherer logic.

* fix: include tagInfo in AI service responses for MCP tools

- Update all core functions that call AI services to extract and return tagInfo
- Update all direct functions to include tagInfo in MCP response data
- Fixes issue where add_task, expand_task, and other AI commands were not including current tag and available tags information
- tagInfo includes currentTag from state.json and availableTags list
- Ensures tagged task lists system information is properly propagated through the full chain: AI service -> core function -> direct function -> MCP client

* fix(move-task): Update move functionality for tagged task system compatibility

- incorporate GitHub commit fixes and resolve readJSON data handling

* feat(tagged-tasks): Complete core tag management system implementation

- Implements comprehensive tagged task lists system for multi-context task management including core tag management functions (Task 103.11), MCP integration updates, and foundational infrastructure for tagged task operations. Features tag CRUD operations, validation, metadata tracking, deep task copying, and full backward compatibility.

* fix(core): Fixed move-task.js writing _rawTaggedData directly, updated writeJSON to filter tag fields, fixed CLI move command missing projectRoot, added ensureTagMetadata utility

* fix(tasks): ensure list tasks triggers silent migration if necessary.

* feat(tags): Complete show and add-task command tag support
- show command: Added --tag flag, fixed projectRoot passing to UI functions
- add-task command: Already had proper tag support and projectRoot handling
- Both commands now work correctly with tagged task lists system
- Migration logic works properly when viewing and adding tasks
- Updated subtask 103.5 with progress on high-priority command fixes

* fix(tags): Clean up rogue created properties and fix taskCount calculation
- Enhanced writeJSON to automatically filter rogue created/description properties from tag objects
- Fixed tags command error by making taskCount calculation dynamic instead of hardcoded
- Cleaned up existing rogue created property in master tag through forced write operation
- All created properties now properly located in metadata objects only
- Tags command working perfectly with proper task count display
- Data integrity maintained with automatic cleanup during write operations

* fix(tags): Resolve critical tag deletion and migration notice bugs

Major Issues Fixed:

1. Tag Deletion Bug: Fixed critical issue where creating subtasks would delete other tags

   - Root cause: writeJSON function wasn't accepting projectRoot/tag parameters

   - Fixed writeJSON signature and logic to handle tagged data structure

   - Added proper merging of resolved tag data back into full tagged structure

2. Persistent Migration Notice: Fixed FYI notice showing after every command

   - Root cause: markMigrationForNotice was resetting migrationNoticeShown to false

   - Fixed migration logic to only trigger on actual legacy->tagged migrations

   - Added proper _rawTaggedData checks to prevent false migration detection

3. Data Corruption Prevention: Enhanced data integrity safeguards

   - Fixed writeJSON to filter out internal properties

   - Added automatic cleanup of rogue properties

   - Improved hasTaggedStructure detection logic

Commands Fixed: add-subtask, remove-subtask, and all commands now preserve tags correctly

* fix(tags): Resolve tag deletion bug in remove-task command

Refactored the core 'removeTask' function to be fully tag-aware, preventing data corruption.

- The function now correctly reads the full tagged data structure by prioritizing '_rawTaggedData' instead of operating on a resolved single-tag view.

- All subsequent operations (task removal, dependency cleanup, file writing) now correctly reference the full multi-tag data object, preserving the integrity of 'tasks.json'.

- This resolves the critical bug where removing a task would delete all other tags.

* fix(tasks): Ensure new task IDs are sequential within the target tag

Modified the ID generation logic in 'add-task.js' to calculate the next task ID based on the highest ID within the specified tag, rather than globally across all tags.

This fixes a critical bug where creating a task in a new tag would result in a high, non-sequential ID, such as ID 105 for the first task in a tag.

* fix(commands): Add missing context parameters to dependency and remove-subtask commands

- Add projectRoot and tag context to all dependency commands
- Add projectRoot and tag context to remove-subtask command
- Add --tag option to remove-subtask command
- Fixes critical bug where remove-subtask was deleting other tags due to missing context
- All dependency and subtask commands now properly handle tagged task lists

* feat(tags): Add --tag flag support to core commands for multi-context task management
- parse-prd now supports creating tasks in specific contexts
- Fixed tag preservation logic to prevent data loss
- analyze-complexity generates tag-specific reports
- Non-existent tags created automatically
- Enables rapid prototyping and parallel development workflows

* feat(tags): Complete tagged task lists system with enhanced use-tag command

- Multi-context task management with full CLI support
- Enhanced use-tag command shows next available task after switching
- Universal --tag flag support across all commands
- Seamless migration with zero disruption
- Complete tag management suite (add, delete, rename, copy, list)
- Smart confirmation logic and data integrity protection
- State management and configuration integration
- Real-world use cases for teams, features, and releases

* feat(tags): Complete tag support for remaining CLI commands

- Add --tag flag to update, move, and set-status commands
- Ensure all task operation commands now support tag context
- Fix missing tag context passing to core functions
- Complete comprehensive tag-aware command coverage

* feat(ui): add tag indicator to all CLI commands
- shows 🏷️ tag: tagname for complete context visibility across 15+ commands

* fix(ui): resolve dependency 'Not found' issue when filtering

- now correctly displays dependencies that exist but are filtered out of view

* feat(research): Add comprehensive AI-powered research command with interactive follow-ups, save functionality, intelligent context gathering, fuzzy task discovery, multi-source context support, enhanced display with syntax highlighting, clean inquirer menus, comprehensive help, and MCP integration with saveTo parameter

* feat(tags): Implement full MCP support for Tagged Task Lists and update-task append mode

* chore: task management

* feat(research): Enhance research command with follow-up menu, save functionality, and fix ContextGatherer token counting

* feat(git-workflow): Add automatic git branch-tag integration

- Implement automatic tag creation when switching to new git branches

- Add branch-tag mapping system for seamless context switching

- Enable auto-switch of task contexts based on current git branch

- Provide isolated task contexts per branch to prevent merge conflicts

- Add configuration support for enabling/disabling git workflow features

- Fix ES module compatibility issues in git-utils module

- Maintain zero migration impact with automatic 'master' tag creation

- Support parallel development with branch-specific task contexts

The git workflow system automatically detects branch changes and creates corresponding empty task tags, enabling developers to maintain separate task contexts for different features/branches while preventing task-related merge conflicts during collaborative development.

Resolves git workflow integration requirements for multi-context development.

* feat(git-workflow): Simplify git integration with --from-branch option

- Remove automatic git workflow and branch-tag switching - we are not ready for it yet

- Add --from-branch option to add-tag command for manual tag creation from git branch

- Remove git workflow configuration from config.json and assets

- Disable automatic tag switching functions in git-utils.js

- Add createTagFromBranch function for branch-based tag creation

- Support both CLI and MCP interfaces for --from-branch functionality

- Fix ES module imports in git-utils.js and utils.js

- Maintain user control over tag contexts without forced automation

The simplified approach allows users to create tags from their current git branch when desired, without the complexity and rigidity of automatic branch-tag synchronization. Users maintain full control over their tag contexts while having convenient tools for git-based workflows when needed.

* docs: Update rule files to reflect simplified git integration approach

- Remove automatic git workflow features, update to manual --from-branch option, change Part 2 references to completed status

* fix(commands): Fix add-tag --from-branch requiring tagName argument
- Made tagName optional when using --from-branch - Added validation for either tagName or --from-branch
- Fixes 'missing required argument' error with --from-branch option

* fix(mcp): Prevent tag deletion on subtask update

Adds a safety net to the writeJSON utility to prevent data loss when updating subtasks via the MCP server.

The MCP process was inadvertently causing the _rawTaggedData property, which holds the complete multi-tag structure, to be lost. When writeJSON received the data for only a single tag, it would overwrite the entire tasks.json file, deleting all other tags.

This fix makes writeJSON more robust. If it receives data that looks like a single, resolved tag without the complete structure, it re-reads the full tasks.json file from disk. It then carefully merges the updated data back into the correct tag within the full structure, preserving all other tags.

* fix: resolve all remaining test failures and improve test reliability

- Fix clear-subtasks test by implementing deep copy of mock data to prevent mutation issues between tests
- Fix add-task test by uncommenting and properly configuring generateTaskFiles call with correct parameters
- Fix analyze-task-complexity tests by properly mocking fs.writeFileSync with shared mock function
- Update test expectations to match actual function signatures and data structures
- Improve mock setup consistency across all test suites
- Ensure all tests now pass (329 total: 318 passed, 11 skipped, 0 failed)

* chore: task management

---------

Co-authored-by: Eyal Toledano <eyal@microangel.so>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: Ibrahim H. <bitsnaps@yahoo.fr>
Co-authored-by: Saksham Goel <sakshamgoel1107@gmail.com>
Co-authored-by: Joe Danziger <joe@ticc.net>
Co-authored-by: Aaron Gabriel Neyer <ag@unforced.org>
2025-06-14 11:04:26 -04:00

1070 lines
30 KiB
JavaScript

/**
* research.js
* Core research functionality for AI-powered queries with project context
*/
import fs from 'fs';
import path from 'path';
import chalk from 'chalk';
import boxen from 'boxen';
import inquirer from 'inquirer';
import { highlight } from 'cli-highlight';
import { ContextGatherer } from '../utils/contextGatherer.js';
import { FuzzyTaskSearch } from '../utils/fuzzyTaskSearch.js';
import { generateTextService } from '../ai-services-unified.js';
import {
log as consoleLog,
findProjectRoot,
readJSON,
flattenTasksWithSubtasks
} from '../utils.js';
import {
displayAiUsageSummary,
startLoadingIndicator,
stopLoadingIndicator
} from '../ui.js';
/**
* Perform AI-powered research with project context
* @param {string} query - Research query/prompt
* @param {Object} options - Research options
* @param {Array<string>} [options.taskIds] - Task/subtask IDs for context
* @param {Array<string>} [options.filePaths] - File paths for context
* @param {string} [options.customContext] - Additional custom context
* @param {boolean} [options.includeProjectTree] - Include project file tree
* @param {string} [options.detailLevel] - Detail level: 'low', 'medium', 'high'
* @param {string} [options.projectRoot] - Project root directory
* @param {boolean} [options.saveToFile] - Whether to save results to file (MCP mode)
* @param {Object} [context] - Execution context
* @param {Object} [context.session] - MCP session object
* @param {Object} [context.mcpLog] - MCP logger object
* @param {string} [context.commandName] - Command name for telemetry
* @param {string} [context.outputType] - Output type ('cli' or 'mcp')
* @param {string} [outputFormat] - Output format ('text' or 'json')
* @param {boolean} [allowFollowUp] - Whether to allow follow-up questions (default: true)
* @returns {Promise<Object>} Research results with telemetry data
*/
async function performResearch(
query,
options = {},
context = {},
outputFormat = 'text',
allowFollowUp = true
) {
const {
taskIds = [],
filePaths = [],
customContext = '',
includeProjectTree = false,
detailLevel = 'medium',
projectRoot: providedProjectRoot,
saveToFile = false
} = options;
const {
session,
mcpLog,
commandName = 'research',
outputType = 'cli'
} = context;
const isMCP = !!mcpLog;
// Determine project root
const projectRoot = providedProjectRoot || findProjectRoot();
if (!projectRoot) {
throw new Error('Could not determine project root directory');
}
// Create consistent logger
const logFn = isMCP
? mcpLog
: {
info: (...args) => consoleLog('info', ...args),
warn: (...args) => consoleLog('warn', ...args),
error: (...args) => consoleLog('error', ...args),
debug: (...args) => consoleLog('debug', ...args),
success: (...args) => consoleLog('success', ...args)
};
// Show UI banner for CLI mode
if (outputFormat === 'text') {
console.log(
boxen(chalk.cyan.bold(`🔍 AI Research Query`), {
padding: 1,
borderColor: 'cyan',
borderStyle: 'round',
margin: { top: 1, bottom: 1 }
})
);
}
try {
// Initialize context gatherer
const contextGatherer = new ContextGatherer(projectRoot);
// Auto-discover relevant tasks using fuzzy search to supplement provided tasks
let finalTaskIds = [...taskIds]; // Start with explicitly provided tasks
let autoDiscoveredIds = [];
try {
const tasksPath = path.join(projectRoot, 'tasks', 'tasks.json');
const tasksData = await readJSON(tasksPath);
if (tasksData && tasksData.tasks && tasksData.tasks.length > 0) {
// Flatten tasks to include subtasks for fuzzy search
const flattenedTasks = flattenTasksWithSubtasks(tasksData.tasks);
const fuzzySearch = new FuzzyTaskSearch(flattenedTasks, 'research');
const searchResults = fuzzySearch.findRelevantTasks(query, {
maxResults: 8,
includeRecent: true,
includeCategoryMatches: true
});
autoDiscoveredIds = fuzzySearch.getTaskIds(searchResults);
// Remove any auto-discovered tasks that were already explicitly provided
const uniqueAutoDiscovered = autoDiscoveredIds.filter(
(id) => !finalTaskIds.includes(id)
);
// Add unique auto-discovered tasks to the final list
finalTaskIds = [...finalTaskIds, ...uniqueAutoDiscovered];
if (outputFormat === 'text' && finalTaskIds.length > 0) {
// Sort task IDs numerically for better display
const sortedTaskIds = finalTaskIds
.map((id) => parseInt(id))
.sort((a, b) => a - b)
.map((id) => id.toString());
// Show different messages based on whether tasks were explicitly provided
if (taskIds.length > 0) {
const sortedProvidedIds = taskIds
.map((id) => parseInt(id))
.sort((a, b) => a - b)
.map((id) => id.toString());
console.log(
chalk.gray('Provided tasks: ') +
chalk.cyan(sortedProvidedIds.join(', '))
);
if (uniqueAutoDiscovered.length > 0) {
const sortedAutoIds = uniqueAutoDiscovered
.map((id) => parseInt(id))
.sort((a, b) => a - b)
.map((id) => id.toString());
console.log(
chalk.gray('+ Auto-discovered related tasks: ') +
chalk.cyan(sortedAutoIds.join(', '))
);
}
} else {
console.log(
chalk.gray('Auto-discovered relevant tasks: ') +
chalk.cyan(sortedTaskIds.join(', '))
);
}
}
}
} catch (error) {
// Silently continue without auto-discovered tasks if there's an error
logFn.debug(`Could not auto-discover tasks: ${error.message}`);
}
const contextResult = await contextGatherer.gather({
tasks: finalTaskIds,
files: filePaths,
customContext,
includeProjectTree,
format: 'research', // Use research format for AI consumption
includeTokenCounts: true
});
const gatheredContext = contextResult.context;
const tokenBreakdown = contextResult.tokenBreakdown;
// Build system prompt based on detail level
const systemPrompt = buildResearchSystemPrompt(detailLevel, projectRoot);
// Build user prompt with context
const userPrompt = buildResearchUserPrompt(
query,
gatheredContext,
detailLevel
);
// Count tokens for system and user prompts
const systemPromptTokens = contextGatherer.countTokens(systemPrompt);
const userPromptTokens = contextGatherer.countTokens(userPrompt);
const totalInputTokens = systemPromptTokens + userPromptTokens;
if (outputFormat === 'text') {
// Display detailed token breakdown in a clean box
displayDetailedTokenBreakdown(
tokenBreakdown,
systemPromptTokens,
userPromptTokens
);
}
// Only log detailed info in debug mode or MCP
if (outputFormat !== 'text') {
logFn.info(
`Calling AI service with research role, context size: ${tokenBreakdown.total} tokens (${gatheredContext.length} characters)`
);
}
// Start loading indicator for CLI mode
let loadingIndicator = null;
if (outputFormat === 'text') {
loadingIndicator = startLoadingIndicator('Researching with AI...\n');
}
let aiResult;
try {
// Call AI service with research role
aiResult = await generateTextService({
role: 'research', // Always use research role for research command
session,
projectRoot,
systemPrompt,
prompt: userPrompt,
commandName,
outputType
});
} catch (error) {
if (loadingIndicator) {
stopLoadingIndicator(loadingIndicator);
}
throw error;
} finally {
if (loadingIndicator) {
stopLoadingIndicator(loadingIndicator);
}
}
const researchResult = aiResult.mainResult;
const telemetryData = aiResult.telemetryData;
const tagInfo = aiResult.tagInfo;
// Format and display results
if (outputFormat === 'text') {
displayResearchResults(
researchResult,
query,
detailLevel,
tokenBreakdown
);
// Display AI usage telemetry for CLI users
if (telemetryData) {
displayAiUsageSummary(telemetryData, 'cli');
}
// Offer follow-up question option (only for initial CLI queries, not MCP)
if (allowFollowUp && !isMCP) {
await handleFollowUpQuestions(
options,
context,
outputFormat,
projectRoot,
logFn,
query,
researchResult
);
}
}
// Handle MCP save-to-file request
if (saveToFile && isMCP) {
const conversationHistory = [
{
question: query,
answer: researchResult,
type: 'initial',
timestamp: new Date().toISOString()
}
];
const savedFilePath = await handleSaveToFile(
conversationHistory,
projectRoot,
context,
logFn
);
// Add saved file path to return data
return {
query,
result: researchResult,
contextSize: gatheredContext.length,
contextTokens: tokenBreakdown.total,
tokenBreakdown,
systemPromptTokens,
userPromptTokens,
totalInputTokens,
detailLevel,
telemetryData,
tagInfo,
savedFilePath
};
}
logFn.success('Research query completed successfully');
return {
query,
result: researchResult,
contextSize: gatheredContext.length,
contextTokens: tokenBreakdown.total,
tokenBreakdown,
systemPromptTokens,
userPromptTokens,
totalInputTokens,
detailLevel,
telemetryData,
tagInfo
};
} catch (error) {
logFn.error(`Research query failed: ${error.message}`);
if (outputFormat === 'text') {
console.error(chalk.red(`\n❌ Research failed: ${error.message}`));
}
throw error;
}
}
/**
* Build system prompt for research based on detail level
* @param {string} detailLevel - Detail level: 'low', 'medium', 'high'
* @param {string} projectRoot - Project root for context
* @returns {string} System prompt
*/
function buildResearchSystemPrompt(detailLevel, projectRoot) {
const basePrompt = `You are an expert AI research assistant helping with a software development project. You have access to project context including tasks, files, and project structure.
Your role is to provide comprehensive, accurate, and actionable research responses based on the user's query and the provided project context.`;
const detailInstructions = {
low: `
**Response Style: Concise & Direct**
- Provide brief, focused answers (2-4 paragraphs maximum)
- Focus on the most essential information
- Use bullet points for key takeaways
- Avoid lengthy explanations unless critical
- Skip pleasantries, introductions, and conclusions
- No phrases like "Based on your project context" or "I'll provide guidance"
- No summary outros or alignment statements
- Get straight to the actionable information
- Use simple, direct language - users want info, not explanation`,
medium: `
**Response Style: Balanced & Comprehensive**
- Provide thorough but well-structured responses (4-8 paragraphs)
- Include relevant examples and explanations
- Balance depth with readability
- Use headings and bullet points for organization`,
high: `
**Response Style: Detailed & Exhaustive**
- Provide comprehensive, in-depth analysis (8+ paragraphs)
- Include multiple perspectives and approaches
- Provide detailed examples, code snippets, and step-by-step guidance
- Cover edge cases and potential pitfalls
- Use clear structure with headings, subheadings, and lists`
};
return `${basePrompt}
${detailInstructions[detailLevel]}
**Guidelines:**
- Always consider the project context when formulating responses
- Reference specific tasks, files, or project elements when relevant
- Provide actionable insights that can be applied to the project
- If the query relates to existing project tasks, suggest how the research applies to those tasks
- Use markdown formatting for better readability
- Be precise and avoid speculation unless clearly marked as such
**For LOW detail level specifically:**
- Start immediately with the core information
- No introductory phrases or context acknowledgments
- No concluding summaries or project alignment statements
- Focus purely on facts, steps, and actionable items`;
}
/**
* Build user prompt with query and context
* @param {string} query - User's research query
* @param {string} gatheredContext - Gathered project context
* @param {string} detailLevel - Detail level for response guidance
* @returns {string} Complete user prompt
*/
function buildResearchUserPrompt(query, gatheredContext, detailLevel) {
let prompt = `# Research Query
${query}`;
if (gatheredContext && gatheredContext.trim()) {
prompt += `
# Project Context
${gatheredContext}`;
}
prompt += `
# Instructions
Please research and provide a ${detailLevel}-detail response to the query above. Consider the project context provided and make your response as relevant and actionable as possible for this specific project.`;
return prompt;
}
/**
* Display detailed token breakdown for context and prompts
* @param {Object} tokenBreakdown - Token breakdown from context gatherer
* @param {number} systemPromptTokens - System prompt token count
* @param {number} userPromptTokens - User prompt token count
*/
function displayDetailedTokenBreakdown(
tokenBreakdown,
systemPromptTokens,
userPromptTokens
) {
const parts = [];
// Custom context
if (tokenBreakdown.customContext) {
parts.push(
chalk.cyan('Custom: ') +
chalk.yellow(tokenBreakdown.customContext.tokens.toLocaleString())
);
}
// Tasks breakdown
if (tokenBreakdown.tasks && tokenBreakdown.tasks.length > 0) {
const totalTaskTokens = tokenBreakdown.tasks.reduce(
(sum, task) => sum + task.tokens,
0
);
const taskDetails = tokenBreakdown.tasks
.map((task) => {
const titleDisplay =
task.title.length > 30
? task.title.substring(0, 30) + '...'
: task.title;
return ` ${chalk.gray(task.id)} ${chalk.white(titleDisplay)} ${chalk.yellow(task.tokens.toLocaleString())} tokens`;
})
.join('\n');
parts.push(
chalk.cyan('Tasks: ') +
chalk.yellow(totalTaskTokens.toLocaleString()) +
chalk.gray(` (${tokenBreakdown.tasks.length} items)`) +
'\n' +
taskDetails
);
}
// Files breakdown
if (tokenBreakdown.files && tokenBreakdown.files.length > 0) {
const totalFileTokens = tokenBreakdown.files.reduce(
(sum, file) => sum + file.tokens,
0
);
const fileDetails = tokenBreakdown.files
.map((file) => {
const pathDisplay =
file.path.length > 40
? '...' + file.path.substring(file.path.length - 37)
: file.path;
return ` ${chalk.gray(pathDisplay)} ${chalk.yellow(file.tokens.toLocaleString())} tokens ${chalk.gray(`(${file.sizeKB}KB)`)}`;
})
.join('\n');
parts.push(
chalk.cyan('Files: ') +
chalk.yellow(totalFileTokens.toLocaleString()) +
chalk.gray(` (${tokenBreakdown.files.length} files)`) +
'\n' +
fileDetails
);
}
// Project tree
if (tokenBreakdown.projectTree) {
parts.push(
chalk.cyan('Project Tree: ') +
chalk.yellow(tokenBreakdown.projectTree.tokens.toLocaleString()) +
chalk.gray(
` (${tokenBreakdown.projectTree.fileCount} files, ${tokenBreakdown.projectTree.dirCount} dirs)`
)
);
}
// Prompts breakdown
const totalPromptTokens = systemPromptTokens + userPromptTokens;
const promptDetails = [
` ${chalk.gray('System:')} ${chalk.yellow(systemPromptTokens.toLocaleString())} tokens`,
` ${chalk.gray('User:')} ${chalk.yellow(userPromptTokens.toLocaleString())} tokens`
].join('\n');
parts.push(
chalk.cyan('Prompts: ') +
chalk.yellow(totalPromptTokens.toLocaleString()) +
chalk.gray(' (generated)') +
'\n' +
promptDetails
);
// Display the breakdown in a clean box
if (parts.length > 0) {
const content = parts.join('\n\n');
const tokenBox = boxen(content, {
title: chalk.blue.bold('Context Analysis'),
titleAlignment: 'left',
padding: { top: 1, bottom: 1, left: 2, right: 2 },
margin: { top: 0, bottom: 1 },
borderStyle: 'single',
borderColor: 'blue'
});
console.log(tokenBox);
}
}
/**
* Process research result text to highlight code blocks
* @param {string} text - Raw research result text
* @returns {string} Processed text with highlighted code blocks
*/
function processCodeBlocks(text) {
// Regex to match code blocks with optional language specification
const codeBlockRegex = /```(\w+)?\n([\s\S]*?)```/g;
return text.replace(codeBlockRegex, (match, language, code) => {
try {
// Default to javascript if no language specified
const lang = language || 'javascript';
// Highlight the code using cli-highlight
const highlightedCode = highlight(code.trim(), {
language: lang,
ignoreIllegals: true // Don't fail on unrecognized syntax
});
// Add a subtle border around code blocks
const codeBox = boxen(highlightedCode, {
padding: { top: 0, bottom: 0, left: 1, right: 1 },
margin: { top: 0, bottom: 0 },
borderStyle: 'single',
borderColor: 'dim'
});
return '\n' + codeBox + '\n';
} catch (error) {
// If highlighting fails, return the original code block with basic formatting
return (
'\n' +
chalk.gray('```' + (language || '')) +
'\n' +
chalk.white(code.trim()) +
'\n' +
chalk.gray('```') +
'\n'
);
}
});
}
/**
* Display research results in formatted output
* @param {string} result - AI research result
* @param {string} query - Original query
* @param {string} detailLevel - Detail level used
* @param {Object} tokenBreakdown - Detailed token usage
*/
function displayResearchResults(result, query, detailLevel, tokenBreakdown) {
// Header with query info
const header = boxen(
chalk.green.bold('Research Results') +
'\n\n' +
chalk.gray('Query: ') +
chalk.white(query) +
'\n' +
chalk.gray('Detail Level: ') +
chalk.cyan(detailLevel),
{
padding: { top: 1, bottom: 1, left: 2, right: 2 },
margin: { top: 1, bottom: 0 },
borderStyle: 'round',
borderColor: 'green'
}
);
console.log(header);
// Process the result to highlight code blocks
const processedResult = processCodeBlocks(result);
// Main research content in a clean box
const contentBox = boxen(processedResult, {
padding: { top: 1, bottom: 1, left: 2, right: 2 },
margin: { top: 0, bottom: 1 },
borderStyle: 'single',
borderColor: 'gray'
});
console.log(contentBox);
// Success footer
console.log(chalk.green('✅ Research completed'));
}
/**
* Handle follow-up questions and save functionality in interactive mode
* @param {Object} originalOptions - Original research options
* @param {Object} context - Execution context
* @param {string} outputFormat - Output format
* @param {string} projectRoot - Project root directory
* @param {Object} logFn - Logger function
* @param {string} initialQuery - Initial query for context
* @param {string} initialResult - Initial AI result for context
*/
async function handleFollowUpQuestions(
originalOptions,
context,
outputFormat,
projectRoot,
logFn,
initialQuery,
initialResult
) {
try {
// Import required modules for saving
const { readJSON } = await import('../utils.js');
const updateTaskById = (await import('./update-task-by-id.js')).default;
const { updateSubtaskById } = await import('./update-subtask-by-id.js');
// Initialize conversation history with the initial Q&A
const conversationHistory = [
{
question: initialQuery,
answer: initialResult,
type: 'initial',
timestamp: new Date().toISOString()
}
];
while (true) {
// Get user choice
const { action } = await inquirer.prompt([
{
type: 'list',
name: 'action',
message: 'What would you like to do next?',
choices: [
{ name: 'Ask a follow-up question', value: 'followup' },
{ name: 'Save to file', value: 'savefile' },
{ name: 'Save to task/subtask', value: 'save' },
{ name: 'Quit', value: 'quit' }
],
pageSize: 4
}
]);
if (action === 'quit') {
break;
}
if (action === 'savefile') {
// Handle save to file functionality
await handleSaveToFile(
conversationHistory,
projectRoot,
context,
logFn
);
continue;
}
if (action === 'save') {
// Handle save functionality
await handleSaveToTask(
conversationHistory,
projectRoot,
context,
logFn
);
continue;
}
if (action === 'followup') {
// Get the follow-up question
const { followUpQuery } = await inquirer.prompt([
{
type: 'input',
name: 'followUpQuery',
message: 'Enter your follow-up question:',
validate: (input) => {
if (!input || input.trim().length === 0) {
return 'Please enter a valid question.';
}
return true;
}
}
]);
if (!followUpQuery || followUpQuery.trim().length === 0) {
continue;
}
console.log('\n' + chalk.gray('─'.repeat(60)) + '\n');
// Build cumulative conversation context from all previous exchanges
const conversationContext =
buildConversationContext(conversationHistory);
// Create enhanced options for follow-up with full conversation context
const followUpOptions = {
...originalOptions,
taskIds: [], // Clear task IDs to allow fresh fuzzy search
customContext:
conversationContext +
(originalOptions.customContext
? `\n\n--- Original Context ---\n${originalOptions.customContext}`
: '')
};
// Perform follow-up research
const followUpResult = await performResearch(
followUpQuery.trim(),
followUpOptions,
context,
outputFormat,
false // allowFollowUp = false for nested calls
);
// Add this exchange to the conversation history
conversationHistory.push({
question: followUpQuery.trim(),
answer: followUpResult.result,
type: 'followup',
timestamp: new Date().toISOString()
});
}
}
} catch (error) {
// If there's an error with inquirer (e.g., non-interactive terminal),
// silently continue without follow-up functionality
logFn.debug(`Follow-up questions not available: ${error.message}`);
}
}
/**
* Handle saving conversation to a task or subtask
* @param {Array} conversationHistory - Array of conversation exchanges
* @param {string} projectRoot - Project root directory
* @param {Object} context - Execution context
* @param {Object} logFn - Logger function
*/
async function handleSaveToTask(
conversationHistory,
projectRoot,
context,
logFn
) {
try {
// Import required modules
const { readJSON } = await import('../utils.js');
const updateTaskById = (await import('./update-task-by-id.js')).default;
const { updateSubtaskById } = await import('./update-subtask-by-id.js');
// Get task ID from user
const { taskId } = await inquirer.prompt([
{
type: 'input',
name: 'taskId',
message: 'Enter task ID (e.g., "15" for task or "15.2" for subtask):',
validate: (input) => {
if (!input || input.trim().length === 0) {
return 'Please enter a task ID.';
}
const trimmedInput = input.trim();
// Validate format: number or number.number
if (!/^\d+(\.\d+)?$/.test(trimmedInput)) {
return 'Invalid format. Use "15" for task or "15.2" for subtask.';
}
return true;
}
}
]);
const trimmedTaskId = taskId.trim();
// Format conversation thread for saving
const conversationThread = formatConversationForSaving(conversationHistory);
// Determine if it's a task or subtask
const isSubtask = trimmedTaskId.includes('.');
// Try to save - first validate the ID exists
const tasksPath = path.join(
projectRoot,
'.taskmaster',
'tasks',
'tasks.json'
);
if (!fs.existsSync(tasksPath)) {
console.log(
chalk.red('❌ Tasks file not found. Please run task-master init first.')
);
return;
}
// Validate ID exists
const data = readJSON(tasksPath, projectRoot);
if (!data || !data.tasks) {
console.log(chalk.red('❌ No valid tasks found.'));
return;
}
if (isSubtask) {
// Validate subtask exists
const [parentId, subtaskId] = trimmedTaskId
.split('.')
.map((id) => parseInt(id, 10));
const parentTask = data.tasks.find((t) => t.id === parentId);
if (!parentTask) {
console.log(chalk.red(`❌ Parent task ${parentId} not found.`));
return;
}
if (
!parentTask.subtasks ||
!parentTask.subtasks.find((st) => st.id === subtaskId)
) {
console.log(chalk.red(`❌ Subtask ${trimmedTaskId} not found.`));
return;
}
// Save to subtask using updateSubtaskById
console.log(chalk.blue('💾 Saving research conversation to subtask...'));
await updateSubtaskById(
tasksPath,
trimmedTaskId,
conversationThread,
false, // useResearch = false for simple append
context,
'text'
);
console.log(
chalk.green(
`✅ Research conversation saved to subtask ${trimmedTaskId}`
)
);
} else {
// Validate task exists
const taskIdNum = parseInt(trimmedTaskId, 10);
const task = data.tasks.find((t) => t.id === taskIdNum);
if (!task) {
console.log(chalk.red(`❌ Task ${trimmedTaskId} not found.`));
return;
}
// Save to task using updateTaskById with append mode
console.log(chalk.blue('💾 Saving research conversation to task...'));
await updateTaskById(
tasksPath,
taskIdNum,
conversationThread,
false, // useResearch = false for simple append
context,
'text',
true // appendMode = true
);
console.log(
chalk.green(`✅ Research conversation saved to task ${trimmedTaskId}`)
);
}
} catch (error) {
console.log(chalk.red(`❌ Error saving conversation: ${error.message}`));
logFn.error(`Error saving conversation: ${error.message}`);
}
}
/**
* Handle saving conversation to a file in .taskmaster/docs/research/
* @param {Array} conversationHistory - Array of conversation exchanges
* @param {string} projectRoot - Project root directory
* @param {Object} context - Execution context
* @param {Object} logFn - Logger function
* @returns {Promise<string>} Path to saved file
*/
async function handleSaveToFile(
conversationHistory,
projectRoot,
context,
logFn
) {
try {
// Create research directory if it doesn't exist
const researchDir = path.join(
projectRoot,
'.taskmaster',
'docs',
'research'
);
if (!fs.existsSync(researchDir)) {
fs.mkdirSync(researchDir, { recursive: true });
}
// Generate filename from first query and timestamp
const firstQuery = conversationHistory[0]?.question || 'research-query';
const timestamp = new Date().toISOString().split('T')[0]; // YYYY-MM-DD format
// Create a slug from the query (remove special chars, limit length)
const querySlug = firstQuery
.toLowerCase()
.replace(/[^a-z0-9\s-]/g, '') // Remove special characters
.replace(/\s+/g, '-') // Replace spaces with hyphens
.replace(/-+/g, '-') // Replace multiple hyphens with single
.substring(0, 50) // Limit length
.replace(/^-+|-+$/g, ''); // Remove leading/trailing hyphens
const filename = `${timestamp}_${querySlug}.md`;
const filePath = path.join(researchDir, filename);
// Format conversation for file
const fileContent = formatConversationForFile(
conversationHistory,
firstQuery
);
// Write file
fs.writeFileSync(filePath, fileContent, 'utf8');
const relativePath = path.relative(projectRoot, filePath);
console.log(
chalk.green(`✅ Research saved to: ${chalk.cyan(relativePath)}`)
);
logFn.success(`Research conversation saved to ${relativePath}`);
return filePath;
} catch (error) {
console.log(chalk.red(`❌ Error saving research file: ${error.message}`));
logFn.error(`Error saving research file: ${error.message}`);
throw error;
}
}
/**
* Format conversation history for saving to a file
* @param {Array} conversationHistory - Array of conversation exchanges
* @param {string} initialQuery - The initial query for metadata
* @returns {string} Formatted file content
*/
function formatConversationForFile(conversationHistory, initialQuery) {
const timestamp = new Date().toISOString();
const date = new Date().toLocaleDateString();
const time = new Date().toLocaleTimeString();
// Create metadata header
let content = `---
title: Research Session
query: "${initialQuery}"
date: ${date}
time: ${time}
timestamp: ${timestamp}
exchanges: ${conversationHistory.length}
---
# Research Session
`;
// Add each conversation exchange
conversationHistory.forEach((exchange, index) => {
if (exchange.type === 'initial') {
content += `## Initial Query\n\n**Question:** ${exchange.question}\n\n**Response:**\n\n${exchange.answer}\n\n`;
} else {
content += `## Follow-up ${index}\n\n**Question:** ${exchange.question}\n\n**Response:**\n\n${exchange.answer}\n\n`;
}
if (index < conversationHistory.length - 1) {
content += '---\n\n';
}
});
// Add footer
content += `\n---\n\n*Generated by Task Master Research Command* \n*Timestamp: ${timestamp}*\n`;
return content;
}
/**
* Format conversation history for saving to a task/subtask
* @param {Array} conversationHistory - Array of conversation exchanges
* @returns {string} Formatted conversation thread
*/
function formatConversationForSaving(conversationHistory) {
const timestamp = new Date().toISOString();
let formatted = `## Research Session - ${new Date().toLocaleDateString()} ${new Date().toLocaleTimeString()}\n\n`;
conversationHistory.forEach((exchange, index) => {
if (exchange.type === 'initial') {
formatted += `**Initial Query:** ${exchange.question}\n\n`;
formatted += `**Response:** ${exchange.answer}\n\n`;
} else {
formatted += `**Follow-up ${index}:** ${exchange.question}\n\n`;
formatted += `**Response:** ${exchange.answer}\n\n`;
}
if (index < conversationHistory.length - 1) {
formatted += '---\n\n';
}
});
return formatted;
}
/**
* Build conversation context string from conversation history
* @param {Array} conversationHistory - Array of conversation exchanges
* @returns {string} Formatted conversation context
*/
function buildConversationContext(conversationHistory) {
if (conversationHistory.length === 0) {
return '';
}
const contextParts = ['--- Conversation History ---'];
conversationHistory.forEach((exchange, index) => {
const questionLabel =
exchange.type === 'initial' ? 'Initial Question' : `Follow-up ${index}`;
const answerLabel =
exchange.type === 'initial' ? 'Initial Answer' : `Answer ${index}`;
contextParts.push(`\n${questionLabel}: ${exchange.question}`);
contextParts.push(`${answerLabel}: ${exchange.answer}`);
});
return contextParts.join('\n');
}
export { performResearch };