mirror of
https://github.com/eyaltoledano/claude-task-master.git
synced 2025-12-04 11:00:48 +00:00
7.2 KiB
7.2 KiB
Configuration
Taskmaster uses two primary methods for configuration:
-
.taskmaster/config.jsonFile (Recommended - New Structure)- This JSON file stores most configuration settings, including AI model selections, parameters, logging levels, and project defaults.
- Location: This file is created in the
.taskmaster/directory when you run thetask-master models --setupinteractive setup or initialize a new project withtask-master init. - Migration: Existing projects with
.taskmasterconfigin the root will continue to work, but should be migrated to the new structure usingtask-master migrate. - Management: Use the
task-master models --setupcommand (ormodelsMCP tool) to interactively create and manage this file. You can also set specific models directly usingtask-master models --set-<role>=<model_id>, adding--ollamaor--openrouterflags for custom models. Manual editing is possible but not recommended unless you understand the structure. - Example Structure:
{ "models": { "main": { "provider": "anthropic", "modelId": "claude-3-7-sonnet-20250219", "maxTokens": 64000, "temperature": 0.2, "baseURL": "https://api.anthropic.com/v1" }, "research": { "provider": "perplexity", "modelId": "sonar-pro", "maxTokens": 8700, "temperature": 0.1, "baseURL": "https://api.perplexity.ai/v1" }, "fallback": { "provider": "anthropic", "modelId": "claude-3-5-sonnet", "maxTokens": 64000, "temperature": 0.2 } }, "global": { "logLevel": "info", "debug": false, "defaultSubtasks": 5, "defaultPriority": "medium", "projectName": "Your Project Name", "ollamaBaseURL": "http://localhost:11434/api", "azureBaseURL": "https://your-endpoint.azure.com/", "vertexProjectId": "your-gcp-project-id", "vertexLocation": "us-central1" } }
-
Legacy
.taskmasterconfigFile (Backward Compatibility)- For projects that haven't migrated to the new structure yet.
- Location: Project root directory.
- Migration: Use
task-master migrateto move this to.taskmaster/config.json. - Deprecation: While still supported, you'll see warnings encouraging migration to the new structure.
Environment Variables (.env file or MCP env block - For API Keys Only)
- Used exclusively for sensitive API keys and specific endpoint URLs.
- Location:
- For CLI usage: Create a
.envfile in your project root. - For MCP/Cursor usage: Configure keys in the
envsection of your.cursor/mcp.jsonfile.
- For CLI usage: Create a
- Required API Keys (Depending on configured providers):
ANTHROPIC_API_KEY: Your Anthropic API key.PERPLEXITY_API_KEY: Your Perplexity API key.OPENAI_API_KEY: Your OpenAI API key.GOOGLE_API_KEY: Your Google API key (also used for Vertex AI provider).MISTRAL_API_KEY: Your Mistral API key.AZURE_OPENAI_API_KEY: Your Azure OpenAI API key (also requiresAZURE_OPENAI_ENDPOINT).OPENROUTER_API_KEY: Your OpenRouter API key.XAI_API_KEY: Your X-AI API key.
- Optional Endpoint Overrides:
- Per-role
baseURLin.taskmasterconfig: You can add abaseURLproperty to any model role (main,research,fallback) to override the default API endpoint for that provider. If omitted, the provider's standard endpoint is used. AZURE_OPENAI_ENDPOINT: Required if using Azure OpenAI key (can also be set asbaseURLfor the Azure model role).OLLAMA_BASE_URL: Override the default Ollama API URL (Default:http://localhost:11434/api).VERTEX_PROJECT_ID: Your Google Cloud project ID for Vertex AI. Required when using the 'vertex' provider.VERTEX_LOCATION: Google Cloud region for Vertex AI (e.g., 'us-central1'). Default is 'us-central1'.GOOGLE_APPLICATION_CREDENTIALS: Path to service account credentials JSON file for Google Cloud auth (alternative to API key for Vertex AI).
- Per-role
Important: Settings like model ID selections (main, research, fallback), maxTokens, temperature, logLevel, defaultSubtasks, defaultPriority, and projectName are managed in .taskmaster/config.json (or .taskmasterconfig for unmigrated projects), not environment variables.
Example .env File (for API Keys)
# Required API keys for providers configured in .taskmasterconfig
ANTHROPIC_API_KEY=sk-ant-api03-your-key-here
PERPLEXITY_API_KEY=pplx-your-key-here
# OPENAI_API_KEY=sk-your-key-here
# GOOGLE_API_KEY=AIzaSy...
# etc.
# Optional Endpoint Overrides
# AZURE_OPENAI_ENDPOINT=https://your-azure-endpoint.openai.azure.com/
# OLLAMA_BASE_URL=http://custom-ollama-host:11434/api
# Google Vertex AI Configuration (Required if using 'vertex' provider)
# VERTEX_PROJECT_ID=your-gcp-project-id
# VERTEX_LOCATION=us-central1
# GOOGLE_APPLICATION_CREDENTIALS=/path/to/service-account-credentials.json
Troubleshooting
Configuration Errors
- If Task Master reports errors about missing configuration or cannot find the config file, run
task-master models --setupin your project root to create or repair the file. - For new projects, config will be created at
.taskmaster/config.json. For legacy projects, you may want to usetask-master migrateto move to the new structure. - Ensure API keys are correctly placed in your
.envfile (for CLI) or.cursor/mcp.json(for MCP) and are valid for the providers selected in your config file.
If task-master init doesn't respond:
Try running it with Node directly:
node node_modules/claude-task-master/scripts/init.js
Or clone the repository and run:
git clone https://github.com/eyaltoledano/claude-task-master.git
cd claude-task-master
node scripts/init.js
Provider-Specific Configuration
Google Vertex AI Configuration
Google Vertex AI is Google Cloud's enterprise AI platform and requires specific configuration:
-
Prerequisites:
- A Google Cloud account with Vertex AI API enabled
- Either a Google API key with Vertex AI permissions OR a service account with appropriate roles
- A Google Cloud project ID
-
Authentication Options:
- API Key: Set the
GOOGLE_API_KEYenvironment variable - Service Account: Set
GOOGLE_APPLICATION_CREDENTIALSto point to your service account JSON file
- API Key: Set the
-
Required Configuration:
- Set
VERTEX_PROJECT_IDto your Google Cloud project ID - Set
VERTEX_LOCATIONto your preferred Google Cloud region (default: us-central1)
- Set
-
Example Setup:
# In .env file GOOGLE_API_KEY=AIzaSyXXXXXXXXXXXXXXXXXXXXXXXXX VERTEX_PROJECT_ID=my-gcp-project-123 VERTEX_LOCATION=us-central1Or using service account:
# In .env file GOOGLE_APPLICATION_CREDENTIALS=/path/to/service-account.json VERTEX_PROJECT_ID=my-gcp-project-123 VERTEX_LOCATION=us-central1 -
In .taskmasterconfig:
"global": { "vertexProjectId": "my-gcp-project-123", "vertexLocation": "us-central1" }