claude-task-master/docs/configuration.md
Oren Me b53065713c
feat: add support for MCP Sampling as AI provider (#863)
* feat: support MCP sampling

* support provider registry

* use standard config options for MCP provider

* update fastmcp to support passing params to requestSampling

* move key name definition to base provider

* moved check for required api key to provider class

* remove unused code

* more cleanup

* more cleanup

* refactor provider

* remove not needed files

* more cleanup

* more cleanup

* more cleanup

* update docs

* fix tests

* add tests

* format fix

* clean files

* merge fixes

* format fix

* feat: add support for MCP Sampling as AI provider

* initial mcp ai sdk

* fix references to old provider

* update models

* lint

* fix gemini-cli conflicts

* ran format

* Update src/provider-registry/index.js

Co-authored-by: Ralph Khreish <35776126+Crunchyman-ralph@users.noreply.github.com>

* fix circular dependency

Circular Dependency Issue  FIXED
Root Cause: BaseAIProvider was importing from index.js, which includes commands.js and other modules that eventually import back to AI providers
Solution: Changed imports to use direct paths to avoid circular dependencies:
Updated base-provider.js to import log directly from utils.js
Updated gemini-cli.js to import log directly from utils.js
Result: Fixed 11 failing tests in mcp-provider.test.js

* fix gemini test

* fix(claude-code): recover from CLI JSON truncation bug (#913) (#920)

Gracefully handle SyntaxError thrown by @anthropic-ai/claude-code when the CLI truncates large JSON outputs (4–16 kB cut-offs).\n\nKey points:\n• Detect JSON parse error + existing buffered text in both doGenerate() and doStream() code paths.\n• Convert the failure into a recoverable 'truncated' finish state and push a provider-warning.\n• Allows Task Master to continue parsing long PRDs / expand-task operations instead of crashing.\n\nA patch changeset (.changeset/claude-code-json-truncation.md) is included for the next release.\n\nRef: eyaltoledano/claude-task-master#913

* docs: fix gemini-cli authentication documentation (#923)

Remove erroneous 'gemini auth login' command references and replace with correct 'gemini' command authentication flow. Update documentation to reflect proper OAuth setup process via the gemini CLI interactive interface.

* fix tests

* fix: update ai-sdk-provider-gemini-cli to 0.0.4 for improved authentication (#932)

- Fixed authentication compatibility issues with Google auth
- Added support for 'api-key' auth type alongside 'gemini-api-key'
- Resolved "Unsupported authType: undefined" runtime errors
- Updated @google/gemini-cli-core dependency to 0.1.9
- Improved documentation and removed invalid auth references
- Maintained backward compatibility while enhancing type validation

* call logging directly

Need to patch upstream fastmcp to allow easier access and bootstrap the TM mcp logger to use the fastmcp logger which today is only exposed in the tools handler

* fix tests

* removing logs until we figure out how to pass mcp logger

* format

* fix tests

* format

* clean up

* cleanup

* readme fix

---------

Co-authored-by: Oren Melamed <oren.m@gloat.com>
Co-authored-by: Ralph Khreish <35776126+Crunchyman-ralph@users.noreply.github.com>
Co-authored-by: Ben Vargas <ben@vargas.com>
2025-07-09 10:54:38 +02:00

16 KiB

Configuration

Taskmaster uses two primary methods for configuration:

  1. .taskmaster/config.json File (Recommended - New Structure)

    • This JSON file stores most configuration settings, including A5. Usage Requirements:
  2. Troubleshooting:

  • "MCP provider requires session context" → Ensure running in MCP environment
  • See the MCP Provider Guide for detailed troubleshootingust be running in an MCP context (session must be available)
  • Session must provide clientCapabilities.sampling capability
  1. Best Practices:

    • Always configure a non-MCP fallback provider
    • Use mcp for main/research roles when in MCP environments
    • Test sampling capability before production use
  2. Setup Commands:

    # Set MCP provider for main role
    task-master models set-main --provider mcp --model claude-3-5-sonnet-20241022
    
    # Set MCP provider for research role  
    task-master models set-research --provider mcp --model claude-3-opus-20240229
    
    # Verify configuration
    task-master models list
    
  3. Troubleshooting:lections, parameters, logging levels, and project defaults.

    • Location: This file is created in the .taskmaster/ directory when you run the task-master models --setup interactive setup or initialize a new project with task-master init.
    • Migration: Existing projects with .taskmasterconfig in the root will continue to work, but should be migrated to the new structure using task-master migrate.
    • Management: Use the task-master models --setup command (or models MCP tool) to interactively create and manage this file. You can also set specific models directly using task-master models --set-<role>=<model_id>, adding --ollama or --openrouter flags for custom models. Manual editing is possible but not recommended unless you understand the structure.
    • Example Structure:
      {
        "models": {
          "main": {
            "provider": "anthropic",
            "modelId": "claude-3-7-sonnet-20250219",
            "maxTokens": 64000,
            "temperature": 0.2,
            "baseURL": "https://api.anthropic.com/v1"
          },
          "research": {
            "provider": "perplexity",
            "modelId": "sonar-pro",
            "maxTokens": 8700,
            "temperature": 0.1,
            "baseURL": "https://api.perplexity.ai/v1"
          },
          "fallback": {
            "provider": "anthropic",
            "modelId": "claude-3-5-sonnet",
            "maxTokens": 64000,
            "temperature": 0.2
          }
        },
        "global": {
          "logLevel": "info",
          "debug": false,
          "defaultNumTasks": 10,
          "defaultSubtasks": 5,
          "defaultPriority": "medium",
          "defaultTag": "master",
          "projectName": "Your Project Name",
          "ollamaBaseURL": "http://localhost:11434/api",
          "azureBaseURL": "https://your-endpoint.azure.com/openai/deployments",
          "vertexProjectId": "your-gcp-project-id",
          "vertexLocation": "us-central1",
              "responseLanguage": "English"
        }
      }
      
  4. Legacy .taskmasterconfig File (Backward Compatibility)

    • For projects that haven't migrated to the new structure yet.
    • Location: Project root directory.
    • Migration: Use task-master migrate to move this to .taskmaster/config.json.
    • Deprecation: While still supported, you'll see warnings encouraging migration to the new structure.

Environment Variables (.env file or MCP env block - For API Keys Only)

  • Used exclusively for sensitive API keys and specific endpoint URLs.
  • Location:
    • For CLI usage: Create a .env file in your project root.
    • For MCP/Cursor usage: Configure keys in the env section of your .cursor/mcp.json file.
  • Required API Keys (Depending on configured providers):
    • ANTHROPIC_API_KEY: Your Anthropic API key.
    • PERPLEXITY_API_KEY: Your Perplexity API key.
    • OPENAI_API_KEY: Your OpenAI API key.
    • GOOGLE_API_KEY: Your Google API key (also used for Vertex AI provider).
    • MISTRAL_API_KEY: Your Mistral API key.
    • AZURE_OPENAI_API_KEY: Your Azure OpenAI API key (also requires AZURE_OPENAI_ENDPOINT).
    • OPENROUTER_API_KEY: Your OpenRouter API key.
    • XAI_API_KEY: Your X-AI API key.
  • Optional Endpoint Overrides:
    • Per-role baseURL in .taskmasterconfig: You can add a baseURL property to any model role (main, research, fallback) to override the default API endpoint for that provider. If omitted, the provider's standard endpoint is used.
    • Environment Variable Overrides (<PROVIDER>_BASE_URL): For greater flexibility, especially with third-party services, you can set an environment variable like OPENAI_BASE_URL or MISTRAL_BASE_URL. This will override any baseURL set in the configuration file for that provider. This is the recommended way to connect to OpenAI-compatible APIs.
    • AZURE_OPENAI_ENDPOINT: Required if using Azure OpenAI key (can also be set as baseURL for the Azure model role).
    • OLLAMA_BASE_URL: Override the default Ollama API URL (Default: http://localhost:11434/api).
    • VERTEX_PROJECT_ID: Your Google Cloud project ID for Vertex AI. Required when using the 'vertex' provider.
    • VERTEX_LOCATION: Google Cloud region for Vertex AI (e.g., 'us-central1'). Default is 'us-central1'.
    • GOOGLE_APPLICATION_CREDENTIALS: Path to service account credentials JSON file for Google Cloud auth (alternative to API key for Vertex AI).

Important: Settings like model ID selections (main, research, fallback), maxTokens, temperature, logLevel, defaultSubtasks, defaultPriority, and projectName are managed in .taskmaster/config.json (or .taskmasterconfig for unmigrated projects), not environment variables.

Tagged Task Lists Configuration (v0.17+)

Taskmaster includes a tagged task lists system for multi-context task management.

Global Tag Settings

"global": {
  "defaultTag": "master"
}
  • defaultTag (string): Default tag context for new operations (default: "master")

Git Integration

Task Master provides manual git integration through the --from-branch option:

  • Manual Tag Creation: Use task-master add-tag --from-branch to create a tag based on your current git branch name
  • User Control: No automatic tag switching - you control when and how tags are created
  • Flexible Workflow: Supports any git workflow without imposing rigid branch-tag mappings

State Management File

Taskmaster uses .taskmaster/state.json to track tagged system runtime information:

{
  "currentTag": "master",
  "lastSwitched": "2025-06-11T20:26:12.598Z",
  "migrationNoticeShown": true
}
  • currentTag: Currently active tag context
  • lastSwitched: Timestamp of last tag switch
  • migrationNoticeShown: Whether migration notice has been displayed

This file is automatically created during tagged system migration and should not be manually edited.

Example .env File (for API Keys)

# Required API keys for providers configured in .taskmaster/config.json
ANTHROPIC_API_KEY=sk-ant-api03-your-key-here
PERPLEXITY_API_KEY=pplx-your-key-here
# OPENAI_API_KEY=sk-your-key-here
# GOOGLE_API_KEY=AIzaSy...
# AZURE_OPENAI_API_KEY=your-azure-openai-api-key-here
# etc.

# Optional Endpoint Overrides
# Use a specific provider's base URL, e.g., for an OpenAI-compatible API
# OPENAI_BASE_URL=https://api.third-party.com/v1
#
# Azure OpenAI Configuration
# AZURE_OPENAI_ENDPOINT=https://your-resource-name.openai.azure.com/ or https://your-endpoint-name.cognitiveservices.azure.com/openai/deployments
# OLLAMA_BASE_URL=http://custom-ollama-host:11434/api

# Google Vertex AI Configuration (Required if using 'vertex' provider)
# VERTEX_PROJECT_ID=your-gcp-project-id

Troubleshooting

Configuration Errors

  • If Task Master reports errors about missing configuration or cannot find the config file, run task-master models --setup in your project root to create or repair the file.
  • For new projects, config will be created at .taskmaster/config.json. For legacy projects, you may want to use task-master migrate to move to the new structure.
  • Ensure API keys are correctly placed in your .env file (for CLI) or .cursor/mcp.json (for MCP) and are valid for the providers selected in your config file.

If task-master init doesn't respond:

Try running it with Node directly:

node node_modules/claude-task-master/scripts/init.js

Or clone the repository and run:

git clone https://github.com/eyaltoledano/claude-task-master.git
cd claude-task-master
node scripts/init.js

Provider-Specific Configuration

MCP (Model Context Protocol) Provider

The MCP provider enables Task Master to use MCP servers as AI providers. This is particularly useful when running Task Master within MCP-compatible development environments like Claude Desktop or Cursor.

  1. Prerequisites:

    • An active MCP session with sampling capability
    • MCP client with sampling support (e.g. VS Code)
    • No API keys required (uses session-based authentication)
  2. Configuration:

    {
      "models": {
        "main": {
          "provider": "mcp",
          "modelId": "mcp-sampling"
        },
        "research": {
          "provider": "mcp",
          "modelId": "mcp-sampling"
        }
      }
    }
    
  3. Available Model IDs:

    • mcp-sampling - General text generation using MCP client sampling (supports all roles)
    • claude-3-5-sonnet-20241022 - High-performance model for general tasks (supports all roles)
    • claude-3-opus-20240229 - Enhanced reasoning model for complex tasks (supports all roles)
  4. Features:

    • Text Generation: Standard AI text generation via MCP sampling
    • Object Generation: Full schema-driven structured output generation
    • PRD Parsing: Parse Product Requirements Documents into structured tasks
    • Task Creation: AI-powered task creation with validation
    • Session Management: Automatic session detection and context handling
    • Error Recovery: Robust error handling and fallback mechanisms
  5. Usage Requirements:

    • Must be running in an MCP context (session must be available)
    • Session must provide clientCapabilities.sampling capability
  6. Best Practices:

    • Always configure a non-MCP fallback provider
    • Use mcp for main/research roles when in MCP environments
    • Test sampling capability before production use
  7. Troubleshooting:

    • "MCP provider requires session context" → Ensure running in MCP environment
    • See the MCP Provider Guide for detailed troubleshooting

Google Vertex AI Configuration

Google Vertex AI is Google Cloud's enterprise AI platform and requires specific configuration:

  1. Prerequisites:

    • A Google Cloud account with Vertex AI API enabled
    • Either a Google API key with Vertex AI permissions OR a service account with appropriate roles
    • A Google Cloud project ID
  2. Authentication Options:

    • API Key: Set the GOOGLE_API_KEY environment variable
    • Service Account: Set GOOGLE_APPLICATION_CREDENTIALS to point to your service account JSON file
  3. Required Configuration:

    • Set VERTEX_PROJECT_ID to your Google Cloud project ID
    • Set VERTEX_LOCATION to your preferred Google Cloud region (default: us-central1)
  4. Example Setup:

    # In .env file
    GOOGLE_API_KEY=AIzaSyXXXXXXXXXXXXXXXXXXXXXXXXX
    VERTEX_PROJECT_ID=my-gcp-project-123
    VERTEX_LOCATION=us-central1
    

    Or using service account:

    # In .env file
    GOOGLE_APPLICATION_CREDENTIALS=/path/to/service-account.json
    VERTEX_PROJECT_ID=my-gcp-project-123
    VERTEX_LOCATION=us-central1
    
  5. In .taskmaster/config.json:

    "global": {
      "vertexProjectId": "my-gcp-project-123",
      "vertexLocation": "us-central1"
    }
    

Azure OpenAI Configuration

Azure OpenAI provides enterprise-grade OpenAI models through Microsoft's Azure cloud platform and requires specific configuration:

  1. Prerequisites:

    • An Azure account with an active subscription
    • Azure OpenAI service resource created in the Azure portal
    • Azure OpenAI API key and endpoint URL
    • Deployed models (e.g., gpt-4o, gpt-4o-mini, gpt-4.1, etc) in your Azure OpenAI resource
  2. Authentication:

    • Set the AZURE_OPENAI_API_KEY environment variable with your Azure OpenAI API key
    • Configure the endpoint URL using one of the methods below
  3. Configuration Options:

    Option 1: Using Global Azure Base URL (affects all Azure models)

    // In .taskmaster/config.json
    {
      "models": {
        "main": {
          "provider": "azure",
          "modelId": "gpt-4o",
          "maxTokens": 16000,
          "temperature": 0.7
        },
        "fallback": {
          "provider": "azure", 
          "modelId": "gpt-4o-mini",
          "maxTokens": 10000,
          "temperature": 0.7
        }
      },
      "global": {
        "azureBaseURL": "https://your-resource-name.azure.com/openai/deployments"
      }
    }
    

    Option 2: Using Per-Model Base URLs (recommended for flexibility)

    // In .taskmaster/config.json
    {
      "models": {
        "main": {
          "provider": "azure",
          "modelId": "gpt-4o", 
          "maxTokens": 16000,
          "temperature": 0.7,
          "baseURL": "https://your-resource-name.azure.com/openai/deployments"
        },
        "research": {
          "provider": "perplexity",
          "modelId": "sonar-pro",
          "maxTokens": 8700,
          "temperature": 0.1
        },
        "fallback": {
          "provider": "azure",
          "modelId": "gpt-4o-mini",
          "maxTokens": 10000, 
          "temperature": 0.7,
          "baseURL": "https://your-resource-name.azure.com/openai/deployments"
        }
      }
    }
    
  4. Environment Variables:

    # In .env file
    AZURE_OPENAI_API_KEY=your-azure-openai-api-key-here
    
    # Optional: Override endpoint for all Azure models
    AZURE_OPENAI_ENDPOINT=https://your-resource-name.azure.com/openai/deployments
    
  5. Important Notes:

    • Model Deployment Names: The modelId in your configuration should match the deployment name you created in Azure OpenAI Studio, not the underlying model name
    • Base URL Priority: Per-model baseURL settings override the global azureBaseURL setting
    • Endpoint Format: When using per-model baseURL, use the full path including /openai/deployments
  6. Troubleshooting:

    "Resource not found" errors:

    • Ensure your baseURL includes the full path: https://your-resource-name.openai.azure.com/openai/deployments
    • Verify that your deployment name in modelId exactly matches what's configured in Azure OpenAI Studio
    • Check that your Azure OpenAI resource is in the correct region and properly deployed

    Authentication errors:

    • Verify your AZURE_OPENAI_API_KEY is correct and has not expired
    • Ensure your Azure OpenAI resource has the necessary permissions
    • Check that your subscription has not been suspended or reached quota limits

    Model availability errors:

    • Confirm the model is deployed in your Azure OpenAI resource
    • Verify the deployment name matches your configuration exactly (case-sensitive)
    • Ensure the model deployment is in a "Succeeded" state in Azure OpenAI Studio
    • Ensure youre not getting rate limited by maxTokens maintain appropriate Tokens per Minute Rate Limit (TPM) in your deployment.