15 KiB
Configuration
Taskmaster uses two primary methods for configuration:
-
.taskmaster/config.jsonFile (Recommended - New Structure)- This JSON file stores most configuration settings, including AI model selections, parameters, logging levels, and project defaults.
- Location: This file is created in the
.taskmaster/directory when you run thetask-master models --setupinteractive setup or initialize a new project withtask-master init. - Migration: Existing projects with
.taskmasterconfigin the root will continue to work, but should be migrated to the new structure usingtask-master migrate. - Management: Use the
task-master models --setupcommand (ormodelsMCP tool) to interactively create and manage this file. You can also set specific models directly usingtask-master models --set-<role>=<model_id>, adding--ollamaor--openrouterflags for custom models. Manual editing is possible but not recommended unless you understand the structure. - Example Structure:
{ "models": { "main": { "provider": "anthropic", "modelId": "claude-3-7-sonnet-20250219", "maxTokens": 64000, "temperature": 0.2, "baseURL": "https://api.anthropic.com/v1" }, "research": { "provider": "perplexity", "modelId": "sonar-pro", "maxTokens": 8700, "temperature": 0.1, "baseURL": "https://api.perplexity.ai/v1" }, "fallback": { "provider": "anthropic", "modelId": "claude-3-5-sonnet", "maxTokens": 64000, "temperature": 0.2 } }, "global": { "logLevel": "info", "debug": false, "defaultNumTasks": 10, "defaultSubtasks": 5, "defaultPriority": "medium", "defaultTag": "master", "projectName": "Your Project Name", "ollamaBaseURL": "http://localhost:11434/api", "azureBaseURL": "https://your-endpoint.azure.com/openai/deployments", "vertexProjectId": "your-gcp-project-id", "vertexLocation": "us-central1", "responseLanguage": "English" } }
For MCP-specific setup and troubleshooting, see Provider-Specific Configuration.
-
Legacy
.taskmasterconfigFile (Backward Compatibility)- For projects that haven't migrated to the new structure yet.
- Location: Project root directory.
- Migration: Use
task-master migrateto move this to.taskmaster/config.json. - Deprecation: While still supported, you'll see warnings encouraging migration to the new structure.
Environment Variables (.env file or MCP env block - For API Keys Only)
- Used exclusively for sensitive API keys and specific endpoint URLs.
- Location:
- For CLI usage: Create a
.envfile in your project root. - For MCP/Cursor usage: Configure keys in the
envsection of your.cursor/mcp.jsonfile.
- For CLI usage: Create a
- Required API Keys (Depending on configured providers):
ANTHROPIC_API_KEY: Your Anthropic API key.PERPLEXITY_API_KEY: Your Perplexity API key.OPENAI_API_KEY: Your OpenAI API key.GOOGLE_API_KEY: Your Google API key (also used for Vertex AI provider).MISTRAL_API_KEY: Your Mistral API key.AZURE_OPENAI_API_KEY: Your Azure OpenAI API key (also requiresAZURE_OPENAI_ENDPOINT).OPENROUTER_API_KEY: Your OpenRouter API key.XAI_API_KEY: Your X-AI API key.
- Optional Endpoint Overrides:
- Per-role
baseURLin.taskmasterconfig: You can add abaseURLproperty to any model role (main,research,fallback) to override the default API endpoint for that provider. If omitted, the provider's standard endpoint is used. - Environment Variable Overrides (
<PROVIDER>_BASE_URL): For greater flexibility, especially with third-party services, you can set an environment variable likeOPENAI_BASE_URLorMISTRAL_BASE_URL. This will override anybaseURLset in the configuration file for that provider. This is the recommended way to connect to OpenAI-compatible APIs. AZURE_OPENAI_ENDPOINT: Required if using Azure OpenAI key (can also be set asbaseURLfor the Azure model role).OLLAMA_BASE_URL: Override the default Ollama API URL (Default:http://localhost:11434/api).VERTEX_PROJECT_ID: Your Google Cloud project ID for Vertex AI. Required when using the 'vertex' provider.VERTEX_LOCATION: Google Cloud region for Vertex AI (e.g., 'us-central1'). Default is 'us-central1'.GOOGLE_APPLICATION_CREDENTIALS: Path to service account credentials JSON file for Google Cloud auth (alternative to API key for Vertex AI).
- Per-role
Important: Settings like model ID selections (main, research, fallback), maxTokens, temperature, logLevel, defaultSubtasks, defaultPriority, and projectName are managed in .taskmaster/config.json (or .taskmasterconfig for unmigrated projects), not environment variables.
Tagged Task Lists Configuration (v0.17+)
Taskmaster includes a tagged task lists system for multi-context task management.
Global Tag Settings
"global": {
"defaultTag": "master"
}
defaultTag(string): Default tag context for new operations (default: "master")
Git Integration
Task Master provides manual git integration through the --from-branch option:
- Manual Tag Creation: Use
task-master add-tag --from-branchto create a tag based on your current git branch name - User Control: No automatic tag switching - you control when and how tags are created
- Flexible Workflow: Supports any git workflow without imposing rigid branch-tag mappings
State Management File
Taskmaster uses .taskmaster/state.json to track tagged system runtime information:
{
"currentTag": "master",
"lastSwitched": "2025-06-11T20:26:12.598Z",
"migrationNoticeShown": true
}
currentTag: Currently active tag contextlastSwitched: Timestamp of last tag switchmigrationNoticeShown: Whether migration notice has been displayed
This file is automatically created during tagged system migration and should not be manually edited.
Example .env File (for API Keys)
# Required API keys for providers configured in .taskmaster/config.json
ANTHROPIC_API_KEY=sk-ant-api03-your-key-here
PERPLEXITY_API_KEY=pplx-your-key-here
# OPENAI_API_KEY=sk-your-key-here
# GOOGLE_API_KEY=AIzaSy...
# AZURE_OPENAI_API_KEY=your-azure-openai-api-key-here
# etc.
# Optional Endpoint Overrides
# Use a specific provider's base URL, e.g., for an OpenAI-compatible API
# OPENAI_BASE_URL=https://api.third-party.com/v1
#
# Azure OpenAI Configuration
# AZURE_OPENAI_ENDPOINT=https://your-resource-name.openai.azure.com/ or https://your-endpoint-name.cognitiveservices.azure.com/openai/deployments
# OLLAMA_BASE_URL=http://custom-ollama-host:11434/api
# Google Vertex AI Configuration (Required if using 'vertex' provider)
# VERTEX_PROJECT_ID=your-gcp-project-id
Troubleshooting
Configuration Errors
- If Task Master reports errors about missing configuration or cannot find the config file, run
task-master models --setupin your project root to create or repair the file. - For new projects, config will be created at
.taskmaster/config.json. For legacy projects, you may want to usetask-master migrateto move to the new structure. - Ensure API keys are correctly placed in your
.envfile (for CLI) or.cursor/mcp.json(for MCP) and are valid for the providers selected in your config file.
If task-master init doesn't respond:
Try running it with Node directly:
node node_modules/claude-task-master/scripts/init.js
Or clone the repository and run:
git clone https://github.com/eyaltoledano/claude-task-master.git
cd claude-task-master
node scripts/init.js
Provider-Specific Configuration
MCP (Model Context Protocol) Provider
-
Prerequisites:
- An active MCP session with sampling capability
- MCP client with sampling support (e.g. VS Code)
- No API keys required (uses session-based authentication)
-
Configuration:
{ "models": { "main": { "provider": "mcp", "modelId": "mcp-sampling" }, "research": { "provider": "mcp", "modelId": "mcp-sampling" } } } -
Available Model IDs:
mcp-sampling- General text generation using MCP client sampling (supports all roles)claude-3-5-sonnet-20241022- High-performance model for general tasks (supports all roles)claude-3-opus-20240229- Enhanced reasoning model for complex tasks (supports all roles)
-
Features:
- ✅ Text Generation: Standard AI text generation via MCP sampling
- ✅ Object Generation: Full schema-driven structured output generation
- ✅ PRD Parsing: Parse Product Requirements Documents into structured tasks
- ✅ Task Creation: AI-powered task creation with validation
- ✅ Session Management: Automatic session detection and context handling
- ✅ Error Recovery: Robust error handling and fallback mechanisms
-
Usage Requirements:
- Must be running in an MCP context (session must be available)
- Session must provide
clientCapabilities.samplingcapability
-
Best Practices:
- Always configure a non-MCP fallback provider
- Use
mcpfor main/research roles when in MCP environments - Test sampling capability before production use
-
Setup Commands:
# Set MCP provider for main role task-master models set-main --provider mcp --model claude-3-5-sonnet-20241022 # Set MCP provider for research role task-master models set-research --provider mcp --model claude-3-opus-20240229 # Verify configuration task-master models list -
Troubleshooting:
- "MCP provider requires session context" → Ensure running in MCP environment
- See the MCP Provider Guide for detailed troubleshooting
Google Vertex AI Configuration
Google Vertex AI is Google Cloud's enterprise AI platform and requires specific configuration:
-
Prerequisites:
- A Google Cloud account with Vertex AI API enabled
- Either a Google API key with Vertex AI permissions OR a service account with appropriate roles
- A Google Cloud project ID
-
Authentication Options:
- API Key: Set the
GOOGLE_API_KEYenvironment variable - Service Account: Set
GOOGLE_APPLICATION_CREDENTIALSto point to your service account JSON file
- API Key: Set the
-
Required Configuration:
- Set
VERTEX_PROJECT_IDto your Google Cloud project ID - Set
VERTEX_LOCATIONto your preferred Google Cloud region (default: us-central1)
- Set
-
Example Setup:
# In .env file GOOGLE_API_KEY=AIzaSyXXXXXXXXXXXXXXXXXXXXXXXXX VERTEX_PROJECT_ID=my-gcp-project-123 VERTEX_LOCATION=us-central1Or using service account:
# In .env file GOOGLE_APPLICATION_CREDENTIALS=/path/to/service-account.json VERTEX_PROJECT_ID=my-gcp-project-123 VERTEX_LOCATION=us-central1 -
In .taskmaster/config.json:
"global": { "vertexProjectId": "my-gcp-project-123", "vertexLocation": "us-central1" }
Azure OpenAI Configuration
Azure OpenAI provides enterprise-grade OpenAI models through Microsoft's Azure cloud platform and requires specific configuration:
-
Prerequisites:
- An Azure account with an active subscription
- Azure OpenAI service resource created in the Azure portal
- Azure OpenAI API key and endpoint URL
- Deployed models (e.g., gpt-4o, gpt-4o-mini, gpt-4.1, etc) in your Azure OpenAI resource
-
Authentication:
- Set the
AZURE_OPENAI_API_KEYenvironment variable with your Azure OpenAI API key - Configure the endpoint URL using one of the methods below
- Set the
-
Configuration Options:
Option 1: Using Global Azure Base URL (affects all Azure models)
// In .taskmaster/config.json { "models": { "main": { "provider": "azure", "modelId": "gpt-4o", "maxTokens": 16000, "temperature": 0.7 }, "fallback": { "provider": "azure", "modelId": "gpt-4o-mini", "maxTokens": 10000, "temperature": 0.7 } }, "global": { "azureBaseURL": "https://your-resource-name.azure.com/openai/deployments" } }Option 2: Using Per-Model Base URLs (recommended for flexibility)
// In .taskmaster/config.json { "models": { "main": { "provider": "azure", "modelId": "gpt-4o", "maxTokens": 16000, "temperature": 0.7, "baseURL": "https://your-resource-name.azure.com/openai/deployments" }, "research": { "provider": "perplexity", "modelId": "sonar-pro", "maxTokens": 8700, "temperature": 0.1 }, "fallback": { "provider": "azure", "modelId": "gpt-4o-mini", "maxTokens": 10000, "temperature": 0.7, "baseURL": "https://your-resource-name.azure.com/openai/deployments" } } } -
Environment Variables:
# In .env file AZURE_OPENAI_API_KEY=your-azure-openai-api-key-here # Optional: Override endpoint for all Azure models AZURE_OPENAI_ENDPOINT=https://your-resource-name.azure.com/openai/deployments -
Important Notes:
- Model Deployment Names: The
modelIdin your configuration should match the deployment name you created in Azure OpenAI Studio, not the underlying model name - Base URL Priority: Per-model
baseURLsettings override the globalazureBaseURLsetting - Endpoint Format: When using per-model
baseURL, use the full path including/openai/deployments
- Model Deployment Names: The
-
Troubleshooting:
"Resource not found" errors:
- Ensure your
baseURLincludes the full path:https://your-resource-name.openai.azure.com/openai/deployments - Verify that your deployment name in
modelIdexactly matches what's configured in Azure OpenAI Studio - Check that your Azure OpenAI resource is in the correct region and properly deployed
Authentication errors:
- Verify your
AZURE_OPENAI_API_KEYis correct and has not expired - Ensure your Azure OpenAI resource has the necessary permissions
- Check that your subscription has not been suspended or reached quota limits
Model availability errors:
- Confirm the model is deployed in your Azure OpenAI resource
- Verify the deployment name matches your configuration exactly (case-sensitive)
- Ensure the model deployment is in a "Succeeded" state in Azure OpenAI Studio
- Ensure youre not getting rate limited by
maxTokensmaintain appropriate Tokens per Minute Rate Limit (TPM) in your deployment.
- Ensure your