mirror of
https://github.com/eyaltoledano/claude-task-master.git
synced 2025-07-25 18:03:46 +00:00

This commit focuses on standardizing configuration and API key access patterns across key modules as part of subtask 61.34. Key changes include: - Refactored `ai-services.js` to remove global AI clients and use `resolveEnvVariable` for API key checks. Client instantiation now relies on `getAnthropicClient`/`getPerplexityClient` accepting a session object. - Refactored `task-manager.js` (`analyzeTaskComplexity` function) to use the unified `generateTextService` from `ai-services-unified.js`, removing direct AI client calls. - Replaced direct `process.env` access for model parameters and other configurations (`PERPLEXITY_MODEL`, `CONFIG.*`) in `task-manager.js` with calls to the appropriate getters from `config-manager.js` (e.g., `getResearchModelId(session)`, `getMainMaxTokens(session)`). - Ensured `utils.js` (`resolveEnvVariable`) correctly handles potentially undefined session objects. - Updated function signatures where necessary to propagate the `session` object for correct context-aware configuration/key retrieval. This moves towards the goal of using `ai-client-factory.js` and `ai-services-unified.js` as the standard pattern for AI interactions and centralizing configuration management through `config-manager.js`.
52 lines
1.9 KiB
JavaScript
52 lines
1.9 KiB
JavaScript
/**
|
|
* Generate a prompt for creating subtasks from a task
|
|
* @param {Object} task - The task to generate subtasks for
|
|
* @param {number} numSubtasks - Number of subtasks to generate
|
|
* @param {string} additionalContext - Additional context to include in the prompt
|
|
* @param {Object} taskAnalysis - Optional complexity analysis for the task
|
|
* @returns {string} - The generated prompt
|
|
*/
|
|
function generateSubtaskPrompt(
|
|
task,
|
|
numSubtasks,
|
|
additionalContext = '',
|
|
taskAnalysis = null
|
|
) {
|
|
// Build the system prompt
|
|
const basePrompt = `You need to break down the following task into ${numSubtasks} specific subtasks that can be implemented one by one.
|
|
|
|
Task ID: ${task.id}
|
|
Title: ${task.title}
|
|
Description: ${task.description || 'No description provided'}
|
|
Current details: ${task.details || 'No details provided'}
|
|
${additionalContext ? `\nAdditional context to consider: ${additionalContext}` : ''}
|
|
${taskAnalysis ? `\nComplexity analysis: This task has a complexity score of ${taskAnalysis.complexityScore}/10.` : ''}
|
|
${taskAnalysis && taskAnalysis.reasoning ? `\nReasoning for complexity: ${taskAnalysis.reasoning}` : ''}
|
|
|
|
Subtasks should:
|
|
1. Be specific and actionable implementation steps
|
|
2. Follow a logical sequence
|
|
3. Each handle a distinct part of the parent task
|
|
4. Include clear guidance on implementation approach
|
|
5. Have appropriate dependency chains between subtasks
|
|
6. Collectively cover all aspects of the parent task
|
|
|
|
Return exactly ${numSubtasks} subtasks with the following JSON structure:
|
|
[
|
|
{
|
|
"id": 1,
|
|
"title": "First subtask title",
|
|
"description": "Detailed description",
|
|
"dependencies": [],
|
|
"details": "Implementation details"
|
|
},
|
|
...more subtasks...
|
|
]
|
|
|
|
Note on dependencies: Subtasks can depend on other subtasks with lower IDs. Use an empty array if there are no dependencies.`;
|
|
|
|
return basePrompt;
|
|
}
|
|
|
|
export default generateSubtaskPrompt;
|