crawl4ai/docs/examples/llm_extraction_openai_pricing.py

44 lines
1.7 KiB
Python
Raw Permalink Normal View History

from crawl4ai import LLMConfig
from crawl4ai import AsyncWebCrawler, LLMExtractionStrategy
import asyncio
import os
import json
from pydantic import BaseModel, Field
url = "https://openai.com/api/pricing/"
2025-01-13 19:19:58 +08:00
class OpenAIModelFee(BaseModel):
model_name: str = Field(..., description="Name of the OpenAI model.")
input_fee: str = Field(..., description="Fee for input token for the OpenAI model.")
2025-01-13 19:19:58 +08:00
output_fee: str = Field(
..., description="Fee for output token for the OpenAI model."
)
async def main():
# Use AsyncWebCrawler
async with AsyncWebCrawler() as crawler:
result = await crawler.arun(
url=url,
word_count_threshold=1,
2025-01-13 19:19:58 +08:00
extraction_strategy=LLMExtractionStrategy(
# provider= "openai/gpt-4o", api_token = os.getenv('OPENAI_API_KEY'),
llm_config=LLMConfig(provider="groq/llama-3.1-70b-versatile", api_token=os.getenv("GROQ_API_KEY")),
schema=OpenAIModelFee.model_json_schema(),
extraction_type="schema",
2025-01-13 19:19:58 +08:00
instruction="From the crawled content, extract all mentioned model names along with their "
"fees for input and output tokens. Make sure not to miss anything in the entire content. "
"One extracted model JSON format should look like this: "
'{ "model_name": "GPT-4", "input_fee": "US$10.00 / 1M tokens", "output_fee": "US$30.00 / 1M tokens" }',
),
)
print("Success:", result.success)
model_fees = json.loads(result.extracted_content)
print(len(model_fees))
with open(".data/data.json", "w", encoding="utf-8") as f:
f.write(result.extracted_content)
2025-01-13 19:19:58 +08:00
asyncio.run(main())