2024-10-27 19:24:46 +08:00
|
|
|
|
# Extraction & Chunking Strategies API
|
|
|
|
|
|
|
|
|
|
This documentation covers the API reference for extraction and chunking strategies in Crawl4AI.
|
|
|
|
|
|
|
|
|
|
## Extraction Strategies
|
|
|
|
|
|
|
|
|
|
All extraction strategies inherit from the base `ExtractionStrategy` class and implement two key methods:
|
|
|
|
|
- `extract(url: str, html: str) -> List[Dict[str, Any]]`
|
|
|
|
|
- `run(url: str, sections: List[str]) -> List[Dict[str, Any]]`
|
|
|
|
|
|
|
|
|
|
### LLMExtractionStrategy
|
|
|
|
|
|
|
|
|
|
Used for extracting structured data using Language Models.
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
LLMExtractionStrategy(
|
|
|
|
|
# Required Parameters
|
|
|
|
|
provider: str = DEFAULT_PROVIDER, # LLM provider (e.g., "ollama/llama2")
|
|
|
|
|
api_token: Optional[str] = None, # API token
|
|
|
|
|
|
|
|
|
|
# Extraction Configuration
|
|
|
|
|
instruction: str = None, # Custom extraction instruction
|
|
|
|
|
schema: Dict = None, # Pydantic model schema for structured data
|
|
|
|
|
extraction_type: str = "block", # "block" or "schema"
|
|
|
|
|
|
|
|
|
|
# Chunking Parameters
|
|
|
|
|
chunk_token_threshold: int = 4000, # Maximum tokens per chunk
|
|
|
|
|
overlap_rate: float = 0.1, # Overlap between chunks
|
|
|
|
|
word_token_rate: float = 0.75, # Word to token conversion rate
|
|
|
|
|
apply_chunking: bool = True, # Enable/disable chunking
|
|
|
|
|
|
|
|
|
|
# API Configuration
|
|
|
|
|
base_url: str = None, # Base URL for API
|
|
|
|
|
extra_args: Dict = {}, # Additional provider arguments
|
|
|
|
|
verbose: bool = False # Enable verbose logging
|
|
|
|
|
)
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
### CosineStrategy
|
|
|
|
|
|
|
|
|
|
Used for content similarity-based extraction and clustering.
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
CosineStrategy(
|
|
|
|
|
# Content Filtering
|
|
|
|
|
semantic_filter: str = None, # Topic/keyword filter
|
|
|
|
|
word_count_threshold: int = 10, # Minimum words per cluster
|
|
|
|
|
sim_threshold: float = 0.3, # Similarity threshold
|
|
|
|
|
|
|
|
|
|
# Clustering Parameters
|
|
|
|
|
max_dist: float = 0.2, # Maximum cluster distance
|
|
|
|
|
linkage_method: str = 'ward', # Clustering method
|
|
|
|
|
top_k: int = 3, # Top clusters to return
|
|
|
|
|
|
|
|
|
|
# Model Configuration
|
|
|
|
|
model_name: str = 'sentence-transformers/all-MiniLM-L6-v2', # Embedding model
|
|
|
|
|
|
|
|
|
|
verbose: bool = False # Enable verbose logging
|
|
|
|
|
)
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
### JsonCssExtractionStrategy
|
|
|
|
|
|
|
|
|
|
Used for CSS selector-based structured data extraction.
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
JsonCssExtractionStrategy(
|
|
|
|
|
schema: Dict[str, Any], # Extraction schema
|
|
|
|
|
verbose: bool = False # Enable verbose logging
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# Schema Structure
|
|
|
|
|
schema = {
|
|
|
|
|
"name": str, # Schema name
|
|
|
|
|
"baseSelector": str, # Base CSS selector
|
|
|
|
|
"fields": [ # List of fields to extract
|
|
|
|
|
{
|
|
|
|
|
"name": str, # Field name
|
|
|
|
|
"selector": str, # CSS selector
|
|
|
|
|
"type": str, # Field type: "text", "attribute", "html", "regex"
|
|
|
|
|
"attribute": str, # For type="attribute"
|
|
|
|
|
"pattern": str, # For type="regex"
|
|
|
|
|
"transform": str, # Optional: "lowercase", "uppercase", "strip"
|
|
|
|
|
"default": Any # Default value if extraction fails
|
|
|
|
|
}
|
|
|
|
|
]
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
## Chunking Strategies
|
|
|
|
|
|
|
|
|
|
All chunking strategies inherit from `ChunkingStrategy` and implement the `chunk(text: str) -> list` method.
|
|
|
|
|
|
|
|
|
|
### RegexChunking
|
|
|
|
|
|
|
|
|
|
Splits text based on regex patterns.
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
RegexChunking(
|
|
|
|
|
patterns: List[str] = None # Regex patterns for splitting
|
|
|
|
|
# Default: [r'\n\n']
|
|
|
|
|
)
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
### SlidingWindowChunking
|
|
|
|
|
|
|
|
|
|
Creates overlapping chunks with a sliding window approach.
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
SlidingWindowChunking(
|
|
|
|
|
window_size: int = 100, # Window size in words
|
|
|
|
|
step: int = 50 # Step size between windows
|
|
|
|
|
)
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
### OverlappingWindowChunking
|
|
|
|
|
|
|
|
|
|
Creates chunks with specified overlap.
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
OverlappingWindowChunking(
|
|
|
|
|
window_size: int = 1000, # Chunk size in words
|
|
|
|
|
overlap: int = 100 # Overlap size in words
|
|
|
|
|
)
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
## Usage Examples
|
|
|
|
|
|
|
|
|
|
### LLM Extraction
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
from pydantic import BaseModel
|
|
|
|
|
from crawl4ai.extraction_strategy import LLMExtractionStrategy
|
2025-02-21 13:11:37 +05:30
|
|
|
|
from crawl4ai.async_configs import LlmConfig
|
2024-10-27 19:24:46 +08:00
|
|
|
|
|
|
|
|
|
# Define schema
|
|
|
|
|
class Article(BaseModel):
|
|
|
|
|
title: str
|
|
|
|
|
content: str
|
|
|
|
|
author: str
|
|
|
|
|
|
|
|
|
|
# Create strategy
|
|
|
|
|
strategy = LLMExtractionStrategy(
|
2025-02-21 13:11:37 +05:30
|
|
|
|
llmConfig = LlmConfig(provider="ollama/llama2"),
|
2024-10-27 19:24:46 +08:00
|
|
|
|
schema=Article.schema(),
|
|
|
|
|
instruction="Extract article details"
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# Use with crawler
|
|
|
|
|
result = await crawler.arun(
|
|
|
|
|
url="https://example.com/article",
|
|
|
|
|
extraction_strategy=strategy
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# Access extracted data
|
|
|
|
|
data = json.loads(result.extracted_content)
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
### CSS Extraction
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
from crawl4ai.extraction_strategy import JsonCssExtractionStrategy
|
|
|
|
|
|
|
|
|
|
# Define schema
|
|
|
|
|
schema = {
|
|
|
|
|
"name": "Product List",
|
|
|
|
|
"baseSelector": ".product-card",
|
|
|
|
|
"fields": [
|
|
|
|
|
{
|
|
|
|
|
"name": "title",
|
|
|
|
|
"selector": "h2.title",
|
|
|
|
|
"type": "text"
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"name": "price",
|
|
|
|
|
"selector": ".price",
|
|
|
|
|
"type": "text",
|
|
|
|
|
"transform": "strip"
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"name": "image",
|
|
|
|
|
"selector": "img",
|
|
|
|
|
"type": "attribute",
|
|
|
|
|
"attribute": "src"
|
|
|
|
|
}
|
|
|
|
|
]
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
# Create and use strategy
|
|
|
|
|
strategy = JsonCssExtractionStrategy(schema)
|
|
|
|
|
result = await crawler.arun(
|
|
|
|
|
url="https://example.com/products",
|
|
|
|
|
extraction_strategy=strategy
|
|
|
|
|
)
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
### Content Chunking
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
from crawl4ai.chunking_strategy import OverlappingWindowChunking
|
2025-02-21 13:11:37 +05:30
|
|
|
|
from crawl4ai.async_configs import LlmConfig
|
2024-10-27 19:24:46 +08:00
|
|
|
|
|
|
|
|
|
# Create chunking strategy
|
|
|
|
|
chunker = OverlappingWindowChunking(
|
|
|
|
|
window_size=500, # 500 words per chunk
|
|
|
|
|
overlap=50 # 50 words overlap
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# Use with extraction strategy
|
|
|
|
|
strategy = LLMExtractionStrategy(
|
2025-02-21 13:11:37 +05:30
|
|
|
|
llmConfig = LlmConfig(provider="ollama/llama2"),
|
2024-10-27 19:24:46 +08:00
|
|
|
|
chunking_strategy=chunker
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
result = await crawler.arun(
|
|
|
|
|
url="https://example.com/long-article",
|
|
|
|
|
extraction_strategy=strategy
|
|
|
|
|
)
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
## Best Practices
|
|
|
|
|
|
2025-01-07 20:49:50 +08:00
|
|
|
|
1. **Choose the Right Strategy**
|
2024-10-27 19:24:46 +08:00
|
|
|
|
- Use `LLMExtractionStrategy` for complex, unstructured content
|
|
|
|
|
- Use `JsonCssExtractionStrategy` for well-structured HTML
|
|
|
|
|
- Use `CosineStrategy` for content similarity and clustering
|
|
|
|
|
|
2025-01-07 20:49:50 +08:00
|
|
|
|
2. **Optimize Chunking**
|
2024-10-27 19:24:46 +08:00
|
|
|
|
```python
|
|
|
|
|
# For long documents
|
|
|
|
|
strategy = LLMExtractionStrategy(
|
|
|
|
|
chunk_token_threshold=2000, # Smaller chunks
|
|
|
|
|
overlap_rate=0.1 # 10% overlap
|
|
|
|
|
)
|
|
|
|
|
```
|
|
|
|
|
|
2025-01-07 20:49:50 +08:00
|
|
|
|
3. **Handle Errors**
|
2024-10-27 19:24:46 +08:00
|
|
|
|
```python
|
|
|
|
|
try:
|
|
|
|
|
result = await crawler.arun(
|
|
|
|
|
url="https://example.com",
|
|
|
|
|
extraction_strategy=strategy
|
|
|
|
|
)
|
|
|
|
|
if result.success:
|
|
|
|
|
content = json.loads(result.extracted_content)
|
|
|
|
|
except Exception as e:
|
|
|
|
|
print(f"Extraction failed: {e}")
|
|
|
|
|
```
|
|
|
|
|
|
2025-01-07 20:49:50 +08:00
|
|
|
|
4. **Monitor Performance**
|
2024-10-27 19:24:46 +08:00
|
|
|
|
```python
|
|
|
|
|
strategy = CosineStrategy(
|
|
|
|
|
verbose=True, # Enable logging
|
|
|
|
|
word_count_threshold=20, # Filter short content
|
|
|
|
|
top_k=5 # Limit results
|
|
|
|
|
)
|
|
|
|
|
```
|