crawl4ai/tests/async/test_evaluation_scraping_methods_performance.configs.py

706 lines
24 KiB
Python
Raw Normal View History

import json
import time
from bs4 import BeautifulSoup
2025-01-13 19:19:58 +08:00
from crawl4ai.content_scraping_strategy import (
WebScrapingStrategy,
LXMLWebScrapingStrategy,
)
from typing import Dict, List, Tuple
import difflib
from lxml import html as lhtml, etree
2025-01-13 19:19:58 +08:00
def normalize_dom(element):
"""
Recursively normalizes an lxml HTML element:
- Removes comment nodes
- Sorts attributes on each node
- Removes <head> if you want (optional)
Returns the same element (mutated).
"""
# Remove comment nodes
2025-01-13 19:19:58 +08:00
comments = element.xpath("//comment()")
for c in comments:
p = c.getparent()
if p is not None:
p.remove(c)
# If you'd like to remove <head>, or unify <html>/<body>, you could do so here.
# For example, remove <head> entirely:
# heads = element.xpath('//head')
# for h in heads:
# parent = h.getparent()
# if parent is not None:
# parent.remove(h)
# Sort attributes (to avoid false positives due to attr order)
for el in element.iter():
if el.attrib:
# Convert to a sorted list of (k, v), then reassign
sorted_attribs = sorted(el.attrib.items())
el.attrib.clear()
for k, v in sorted_attribs:
el.set(k, v)
return element
def strip_html_body(root):
"""
If 'root' is <html>, find its <body> child and move all of <body>'s children
into a new <div>. Return that <div>.
2025-01-13 19:19:58 +08:00
If 'root' is <body>, similarly move all of its children into a new <div> and return it.
Otherwise, return 'root' as-is.
"""
tag_name = (root.tag or "").lower()
# Case 1: The root is <html>
2025-01-13 19:19:58 +08:00
if tag_name == "html":
bodies = root.xpath("./body")
if bodies:
body = bodies[0]
new_div = lhtml.Element("div")
for child in body:
new_div.append(child)
return new_div
else:
# No <body> found; just return the <html> root
return root
# Case 2: The root is <body>
2025-01-13 19:19:58 +08:00
elif tag_name == "body":
new_div = lhtml.Element("div")
for child in root:
new_div.append(child)
return new_div
# Case 3: Neither <html> nor <body>
else:
return root
def compare_nodes(node1, node2, differences, path="/"):
"""
Recursively compare two lxml nodes, appending textual differences to `differences`.
`path` is used to indicate the location in the tree (like an XPath).
"""
# 1) Compare tag names
if node1.tag != node2.tag:
differences.append(f"Tag mismatch at {path}: '{node1.tag}' vs. '{node2.tag}'")
return
# 2) Compare attributes
# By now, they are sorted in normalize_dom()
attrs1 = list(node1.attrib.items())
attrs2 = list(node2.attrib.items())
if attrs1 != attrs2:
2025-01-13 19:19:58 +08:00
differences.append(
f"Attribute mismatch at {path}/{node1.tag}: {attrs1} vs. {attrs2}"
)
# 3) Compare text (trim or unify whitespace as needed)
text1 = (node1.text or "").strip()
text2 = (node2.text or "").strip()
# Normalize whitespace
text1 = " ".join(text1.split())
text2 = " ".join(text2.split())
if text1 != text2:
# If you prefer ignoring newlines or multiple whitespace, do a more robust cleanup
2025-01-13 19:19:58 +08:00
differences.append(
f"Text mismatch at {path}/{node1.tag}: '{text1}' vs. '{text2}'"
)
# 4) Compare number of children
children1 = list(node1)
children2 = list(node2)
if len(children1) != len(children2):
differences.append(
f"Child count mismatch at {path}/{node1.tag}: {len(children1)} vs. {len(children2)}"
)
return # If counts differ, no point comparing child by child
# 5) Recursively compare each child
for i, (c1, c2) in enumerate(zip(children1, children2)):
# Build a path for child
child_path = f"{path}/{node1.tag}[{i}]"
compare_nodes(c1, c2, differences, child_path)
# 6) Compare tail text
tail1 = (node1.tail or "").strip()
tail2 = (node2.tail or "").strip()
if tail1 != tail2:
2025-01-13 19:19:58 +08:00
differences.append(
f"Tail mismatch after {path}/{node1.tag}: '{tail1}' vs. '{tail2}'"
)
def compare_html_structurally(html1, html2):
"""
Compare two HTML strings using a structural approach with lxml.
Returns a list of differences (if any). If empty, they're effectively the same.
"""
# 1) Parse both
try:
tree1 = lhtml.fromstring(html1)
except etree.ParserError:
return ["Error parsing HTML1"]
try:
tree2 = lhtml.fromstring(html2)
except etree.ParserError:
return ["Error parsing HTML2"]
# 2) Normalize both DOMs (remove comments, sort attributes, etc.)
tree1 = normalize_dom(tree1)
tree2 = normalize_dom(tree2)
# 3) Possibly strip <html>/<body> wrappers for better apples-to-apples comparison
tree1 = strip_html_body(tree1)
tree2 = strip_html_body(tree2)
# 4) Compare recursively
differences = []
compare_nodes(tree1, tree2, differences, path="")
return differences
def generate_large_html(n_elements=1000):
2025-01-13 19:19:58 +08:00
html = ["<!DOCTYPE html><html><head></head><body>"]
for i in range(n_elements):
2025-01-13 19:19:58 +08:00
html.append(
f"""
<div class="article">
<h2>Heading {i}</h2>
<p>This is paragraph {i} with some content and a <a href="http://example.com/{i}">link</a></p>
<img src="image{i}.jpg" alt="Image {i}">
<ul>
<li>List item {i}.1</li>
<li>List item {i}.2</li>
</ul>
</div>
2025-01-13 19:19:58 +08:00
"""
)
html.append("</body></html>")
return "".join(html)
def generate_complicated_html():
"""
2025-01-13 19:19:58 +08:00
HTML with multiple domains, forms, data attributes,
various images, comments, style, and noscript to test all parameter toggles.
"""
return """
<!DOCTYPE html>
<html>
<head>
<title>Complicated Test Page</title>
<meta name="description" content="A very complicated page for testing.">
<style>
.hidden { display: none; }
.highlight { color: red; }
</style>
</head>
<body>
<!-- This is a comment that we may remove if remove_comments=True -->
<header>
<h1>Main Title of the Page</h1>
<nav>
<a href="http://example.com/home">Home</a>
<a href="http://social.com/profile">Social Profile</a>
<a href="javascript:void(0)">JS Void Link</a>
</nav>
</header>
<noscript>
<p>JavaScript is disabled or not supported.</p>
</noscript>
<form action="submit.php" method="post">
<input type="text" name="username" />
<button type="submit">Submit</button>
</form>
<section>
<article>
<h2>Article Title</h2>
<p>
This paragraph has a good amount of text to exceed word_count_threshold if it's
set to something small. But it might not exceed a very high threshold.
</p>
<img src="http://images.example.com/photo.jpg" alt="Descriptive alt text"
style="width:200px;height:150px;" data-lazy="true">
<img src="icon.png" alt="Icon" style="display:none;">
<p>Another short text. <a href="/local-link">Local Link</a></p>
</article>
</section>
<section id="promo-section">
<p>Promo text <a href="http://ads.example.com/ad">Ad Link</a></p>
</section>
<aside class="sidebar">
<img src="..." alt="Base64 Image">
<div data-info="secret" class="social-widget">
<p>Follow us on <a href="http://facebook.com/brand">Facebook</a></p>
</div>
</aside>
<!-- Another comment below this line -->
<script>console.log("script that might be removed");</script>
<div style="display:none;">
<p>This is hidden</p>
</div>
<footer>
<small>Footer Info &copy; 2025</small>
</footer>
</body>
</html>
"""
def get_test_scenarios():
"""
Returns a dictionary of parameter sets (test scenarios) for the scraper.
2025-01-13 19:19:58 +08:00
Each scenario name maps to a dictionary of keyword arguments
that will be passed into scrap() for testing various features.
"""
TEST_SCENARIOS = {
# "default": {},
# "exclude_domains": {
# "exclude_domains": {"images.example.com", "ads.example.com"}
# },
# "exclude_social_media_links": {
# "exclude_social_media_links": True
# },
# "high_word_threshold": {
# "word_count_threshold": 100
# },
# "keep_data_attrs": {
# "keep_data_attributes": True
# },
# "remove_forms_and_comments": {
# "remove_forms": True,
# "remove_comments": True
# },
# "exclude_tags_and_selector": {
# "excluded_tags": ["aside", "script"],
# "excluded_selector": ".social-widget"
# },
# "only_text_mode": {
# "only_text": True
# },
# "combo_mode": {
# "exclude_domains": {"images.example.com", "ads.example.com"},
# "exclude_social_media_links": True,
# "remove_forms": True,
# "remove_comments": True,
# "excluded_tags": ["aside"],
# "excluded_selector": "#promo-section",
# "only_text": False,
# "keep_data_attributes": True,
# "word_count_threshold": 20
# },
# "exclude_external_images": {
# "exclude_external_images": True,
# "exclude_social_media_links": True
# },
# "strict_image_scoring": {
# "image_score_threshold": 3,
# "image_description_min_word_threshold": 10
# },
# "custom_css_selector": {
# "css_selector": "section#promo-section"
# },
# "remove_noscript": {
# "excluded_tags": ["noscript"]
# },
# "exclude_external_links": {
# "exclude_external_links": True
# },
# "large_word_count": {
# "word_count_threshold": 500
# },
# "super_strict_images": {
# "image_score_threshold": 5,
# "image_description_min_word_threshold": 15
# },
# "exclude_style_and_script": {
# "excluded_tags": ["style", "script"]
# },
# "keep_data_and_remove_forms": {
# "keep_data_attributes": True,
# "remove_forms": True
# },
# "only_text_high_word_count": {
# "only_text": True,
# "word_count_threshold": 40
# },
# "reduce_to_selector": {
# "css_selector": "section > article"
# },
# "exclude_all_links": {
# # Removes all external links and also excludes example.com & social.com
# "exclude_domains": {"example.com", "social.com", "facebook.com"},
# "exclude_external_links": True
# },
# "comprehensive_removal": {
2025-01-13 19:19:58 +08:00
# # Exclude multiple tags, remove forms & comments,
# # and also remove targeted selectors
# "excluded_tags": ["aside", "noscript", "script"],
# "excluded_selector": "#promo-section, .social-widget",
# "remove_comments": True,
# "remove_forms": True
# }
}
return TEST_SCENARIOS
class ScraperEquivalenceTester:
def __init__(self):
self.test_cases = {
2025-01-13 19:19:58 +08:00
"basic": self.generate_basic_html(),
"complex": self.generate_complex_html(),
"malformed": self.generate_malformed_html(),
# 'real_world': self.load_real_samples()
}
2025-01-13 19:19:58 +08:00
def generate_basic_html(self):
return generate_large_html(1000) # Your existing function
2025-01-13 19:19:58 +08:00
def generate_complex_html(self):
return """
<html><body>
<div class="nested-content">
<article>
<h1>Main Title</h1>
<img src="test.jpg" srcset="test-1x.jpg 1x, test-2x.jpg 2x" data-src="lazy.jpg">
<p>Text with <a href="http://test.com">mixed <b>formatting</b></a></p>
<iframe src="embedded.html"></iframe>
</article>
<nav>
<ul>
<li><a href="/page1">Link 1</a></li>
<li><a href="javascript:void(0)">JS Link</a></li>
</ul>
</nav>
</div>
</body></html>
"""
2025-01-13 19:19:58 +08:00
def generate_malformed_html(self):
return """
<div>Unclosed div
<p>Unclosed paragraph
<a href="test.com">Link</a>
<img src=no-quotes>
<script>document.write("<div>Dynamic</div>");</script>
<!-- Malformed comment -- > -->
<![CDATA[Test CDATA]]>
"""
2025-01-13 19:19:58 +08:00
def load_real_samples(self):
# Load some real-world HTML samples you've collected
samples = {
2025-01-13 19:19:58 +08:00
"article": open("tests/samples/article.html").read(),
"product": open("tests/samples/product.html").read(),
"blog": open("tests/samples/blog.html").read(),
}
return samples
def deep_compare_links(self, old_links: Dict, new_links: Dict) -> List[str]:
"""Detailed comparison of link structures"""
differences = []
2025-01-13 19:19:58 +08:00
for category in ["internal", "external"]:
old_urls = {link["href"] for link in old_links[category]}
new_urls = {link["href"] for link in new_links[category]}
missing = old_urls - new_urls
extra = new_urls - old_urls
2025-01-13 19:19:58 +08:00
if missing:
differences.append(f"Missing {category} links: {missing}")
if extra:
differences.append(f"Extra {category} links: {extra}")
2025-01-13 19:19:58 +08:00
# Compare link attributes for common URLs
common = old_urls & new_urls
for url in common:
2025-01-13 19:19:58 +08:00
old_link = next(l for l in old_links[category] if l["href"] == url)
new_link = next(l for l in new_links[category] if l["href"] == url)
for attr in ["text", "title"]:
if old_link[attr] != new_link[attr]:
differences.append(
f"Link attribute mismatch for {url} - {attr}:"
f" old='{old_link[attr]}' vs new='{new_link[attr]}'"
)
2025-01-13 19:19:58 +08:00
return differences
def deep_compare_media(self, old_media: Dict, new_media: Dict) -> List[str]:
"""Detailed comparison of media elements"""
differences = []
2025-01-13 19:19:58 +08:00
for media_type in ["images", "videos", "audios"]:
old_srcs = {item["src"] for item in old_media[media_type]}
new_srcs = {item["src"] for item in new_media[media_type]}
missing = old_srcs - new_srcs
extra = new_srcs - old_srcs
2025-01-13 19:19:58 +08:00
if missing:
differences.append(f"Missing {media_type}: {missing}")
if extra:
differences.append(f"Extra {media_type}: {extra}")
2025-01-13 19:19:58 +08:00
# Compare media attributes for common sources
common = old_srcs & new_srcs
for src in common:
2025-01-13 19:19:58 +08:00
old_item = next(m for m in old_media[media_type] if m["src"] == src)
new_item = next(m for m in new_media[media_type] if m["src"] == src)
for attr in ["alt", "description"]:
if old_item.get(attr) != new_item.get(attr):
differences.append(
f"{media_type} attribute mismatch for {src} - {attr}:"
f" old='{old_item.get(attr)}' vs new='{new_item.get(attr)}'"
)
2025-01-13 19:19:58 +08:00
return differences
def compare_html_content(self, old_html: str, new_html: str) -> List[str]:
"""Compare HTML content structure and text"""
# return compare_html_structurally(old_html, new_html)
differences = []
2025-01-13 19:19:58 +08:00
def normalize_html(html: str) -> Tuple[str, str]:
2025-01-13 19:19:58 +08:00
soup = BeautifulSoup(html, "lxml")
# Get both structure and text
2025-01-13 19:19:58 +08:00
structure = " ".join(tag.name for tag in soup.find_all())
text = " ".join(soup.get_text().split())
return structure, text
2025-01-13 19:19:58 +08:00
old_structure, old_text = normalize_html(old_html)
new_structure, new_text = normalize_html(new_html)
2025-01-13 19:19:58 +08:00
# Compare structure
if abs(len(old_structure) - len(new_structure)) > 100:
2025-01-13 19:19:58 +08:00
# if old_structure != new_structure:
diff = difflib.unified_diff(
2025-01-13 19:19:58 +08:00
old_structure.split(), new_structure.split(), lineterm=""
)
2025-01-13 19:19:58 +08:00
differences.append("HTML structure differences:\n" + "\n".join(diff))
# Compare text content
if abs(len(old_text) - len(new_text)) > 100:
2025-01-13 19:19:58 +08:00
# if old_text != new_text:
# Show detailed text differences
text_diff = difflib.unified_diff(
2025-01-13 19:19:58 +08:00
old_text.split(), new_text.split(), lineterm=""
)
2025-01-13 19:19:58 +08:00
differences.append("Text content differences:\n" + "\n".join(text_diff))
return differences
2025-01-13 19:19:58 +08:00
def compare_results(
self, old_result: Dict, new_result: Dict
) -> Dict[str, List[str]]:
"""Comprehensive comparison of scraper outputs"""
differences = {}
2025-01-13 19:19:58 +08:00
# Compare links
2025-01-13 19:19:58 +08:00
link_differences = self.deep_compare_links(
old_result["links"], new_result["links"]
)
if link_differences:
2025-01-13 19:19:58 +08:00
differences["links"] = link_differences
# Compare media
2025-01-13 19:19:58 +08:00
media_differences = self.deep_compare_media(
old_result["media"], new_result["media"]
)
if media_differences:
2025-01-13 19:19:58 +08:00
differences["media"] = media_differences
# Compare HTML
html_differences = self.compare_html_content(
2025-01-13 19:19:58 +08:00
old_result["cleaned_html"], new_result["cleaned_html"]
)
if html_differences:
2025-01-13 19:19:58 +08:00
differences["html"] = html_differences
return differences
def run_tests(self) -> Dict:
"""Run comparison tests using the complicated HTML with multiple parameter scenarios."""
# We'll still keep some "test_cases" logic from above (basic, complex, malformed).
# But we add a new section for the complicated HTML scenarios.
2025-01-13 19:19:58 +08:00
results = {"tests": [], "summary": {"passed": 0, "failed": 0}}
# 1) First, run the existing 3 built-in test cases (basic, complex, malformed).
# for case_name, html in self.test_cases.items():
# print(f"\nTesting built-in case: {case_name}...")
2025-01-13 19:19:58 +08:00
# original = WebScrapingStrategy()
# lxml = LXMLWebScrapingStrategy()
2025-01-13 19:19:58 +08:00
# start = time.time()
# orig_result = original.scrap("http://test.com", html)
# orig_time = time.time() - start
2025-01-13 19:19:58 +08:00
# print("\nOriginal Mode:")
# print(f"Cleaned HTML size: {len(orig_result['cleaned_html'])/1024:.2f} KB")
# print(f"Images: {len(orig_result['media']['images'])}")
# print(f"External links: {len(orig_result['links']['external'])}")
# print(f"Times - Original: {orig_time:.3f}s")
2025-01-13 19:19:58 +08:00
# start = time.time()
# lxml_result = lxml.scrap("http://test.com", html)
# lxml_time = time.time() - start
2025-01-13 19:19:58 +08:00
# print("\nLXML Mode:")
# print(f"Cleaned HTML size: {len(lxml_result['cleaned_html'])/1024:.2f} KB")
# print(f"Images: {len(lxml_result['media']['images'])}")
# print(f"External links: {len(lxml_result['links']['external'])}")
# print(f"Times - LXML: {lxml_time:.3f}s")
2025-01-13 19:19:58 +08:00
# # Compare
# diffs = {}
# link_diff = self.deep_compare_links(orig_result['links'], lxml_result['links'])
# if link_diff:
# diffs['links'] = link_diff
2025-01-13 19:19:58 +08:00
# media_diff = self.deep_compare_media(orig_result['media'], lxml_result['media'])
# if media_diff:
# diffs['media'] = media_diff
2025-01-13 19:19:58 +08:00
# html_diff = self.compare_html_content(orig_result['cleaned_html'], lxml_result['cleaned_html'])
# if html_diff:
# diffs['html'] = html_diff
2025-01-13 19:19:58 +08:00
# test_result = {
# 'case': case_name,
# 'lxml_mode': {
# 'differences': diffs,
# 'execution_time': lxml_time
# },
# 'original_time': orig_time
# }
# results['tests'].append(test_result)
2025-01-13 19:19:58 +08:00
# if not diffs:
# results['summary']['passed'] += 1
# else:
# results['summary']['failed'] += 1
# 2) Now, run the complicated HTML with multiple parameter scenarios.
complicated_html = generate_complicated_html()
print("\n=== Testing complicated HTML with multiple parameter scenarios ===")
2025-01-13 19:19:58 +08:00
# Create the scrapers once (or you can re-create if needed)
original = WebScrapingStrategy()
lxml = LXMLWebScrapingStrategy()
for scenario_name, params in get_test_scenarios().items():
print(f"\nScenario: {scenario_name}")
2025-01-13 19:19:58 +08:00
start = time.time()
orig_result = original.scrap("http://test.com", complicated_html, **params)
orig_time = time.time() - start
2025-01-13 19:19:58 +08:00
start = time.time()
lxml_result = lxml.scrap("http://test.com", complicated_html, **params)
lxml_time = time.time() - start
2025-01-13 19:19:58 +08:00
diffs = {}
2025-01-13 19:19:58 +08:00
link_diff = self.deep_compare_links(
orig_result["links"], lxml_result["links"]
)
if link_diff:
2025-01-13 19:19:58 +08:00
diffs["links"] = link_diff
2025-01-13 19:19:58 +08:00
media_diff = self.deep_compare_media(
orig_result["media"], lxml_result["media"]
)
if media_diff:
2025-01-13 19:19:58 +08:00
diffs["media"] = media_diff
2025-01-13 19:19:58 +08:00
html_diff = self.compare_html_content(
orig_result["cleaned_html"], lxml_result["cleaned_html"]
)
if html_diff:
2025-01-13 19:19:58 +08:00
diffs["html"] = html_diff
test_result = {
2025-01-13 19:19:58 +08:00
"case": f"complicated_{scenario_name}",
"lxml_mode": {"differences": diffs, "execution_time": lxml_time},
"original_time": orig_time,
}
2025-01-13 19:19:58 +08:00
results["tests"].append(test_result)
if not diffs:
2025-01-13 19:19:58 +08:00
results["summary"]["passed"] += 1
print(
f"✅ [OK] No differences found. Time(Orig: {orig_time:.3f}s, LXML: {lxml_time:.3f}s)"
)
else:
2025-01-13 19:19:58 +08:00
results["summary"]["failed"] += 1
print("❌ Differences found:")
for category, dlist in diffs.items():
print(f" {category}:")
for d in dlist:
print(f" - {d}")
return results
def print_report(self, results: Dict):
"""Generate detailed equivalence report"""
print("\n=== Scraper Equivalence Test Report ===\n")
print(f"Total Cases: {len(results['tests'])}")
print(f"Passed: {results['summary']['passed']}")
print(f"Failed: {results['summary']['failed']}")
2025-01-13 19:19:58 +08:00
for test in results["tests"]:
print(f"\nTest Case: {test['case']}")
2025-01-13 19:19:58 +08:00
if not test["lxml_mode"]["differences"]:
print("✅ All implementations produced identical results")
2025-01-13 19:19:58 +08:00
print(
f"Times - Original: {test['original_time']:.3f}s, "
f"LXML: {test['lxml_mode']['execution_time']:.3f}s"
)
else:
print("❌ Differences found:")
2025-01-13 19:19:58 +08:00
if test["lxml_mode"]["differences"]:
print("\nLXML Mode Differences:")
2025-01-13 19:19:58 +08:00
for category, diffs in test["lxml_mode"]["differences"].items():
print(f"\n{category}:")
for diff in diffs:
print(f" - {diff}")
def main():
tester = ScraperEquivalenceTester()
results = tester.run_tests()
tester.print_report(results)
2025-01-13 19:19:58 +08:00
# Save detailed results for debugging
2025-01-13 19:19:58 +08:00
with open("scraper_equivalence_results.json", "w") as f:
json.dump(results, f, indent=2)
if __name__ == "__main__":
2025-01-13 19:19:58 +08:00
main()