crawl4ai/docs/examples/quickstart.py

563 lines
20 KiB
Python
Raw Normal View History

import os, sys
from crawl4ai import LLMConfig
sys.path.append(
os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
)
import asyncio
import time
import json
import re
2025-01-13 19:19:58 +08:00
from typing import Dict
from bs4 import BeautifulSoup
from pydantic import BaseModel, Field
from crawl4ai import AsyncWebCrawler, CacheMode, BrowserConfig, CrawlerRunConfig
from crawl4ai.markdown_generation_strategy import DefaultMarkdownGenerator
2025-01-13 19:19:58 +08:00
from crawl4ai.content_filter_strategy import PruningContentFilter
from crawl4ai.extraction_strategy import (
JsonCssExtractionStrategy,
LLMExtractionStrategy,
)
__location__ = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__)))
print("Crawl4AI: Advanced Web Crawling and Data Extraction")
print("GitHub Repository: https://github.com/unclecode/crawl4ai")
print("Twitter: @unclecode")
print("Website: https://crawl4ai.com")
# Basic Example - Simple Crawl
async def simple_crawl():
print("\n--- Basic Usage ---")
browser_config = BrowserConfig(headless=True)
crawler_config = CrawlerRunConfig(cache_mode=CacheMode.BYPASS)
async with AsyncWebCrawler(config=browser_config) as crawler:
result = await crawler.arun(
url="https://www.nbcnews.com/business", config=crawler_config
)
print(result.markdown[:500])
async def clean_content():
crawler_config = CrawlerRunConfig(
cache_mode=CacheMode.BYPASS,
excluded_tags=["nav", "footer", "aside"],
remove_overlay_elements=True,
markdown_generator=DefaultMarkdownGenerator(
content_filter=PruningContentFilter(
threshold=0.48, threshold_type="fixed", min_word_threshold=0
),
options={"ignore_links": True},
),
)
async with AsyncWebCrawler() as crawler:
result = await crawler.arun(
url="https://en.wikipedia.org/wiki/Apple",
config=crawler_config,
)
Release prep (#749) * fix: Update export of URLPatternFilter * chore: Add dependancy for cchardet in requirements * docs: Update example for deep crawl in release note for v0.5 * Docs: update the example for memory dispatcher * docs: updated example for crawl strategies * Refactor: Removed wrapping in if __name__==main block since this is a markdown file. * chore: removed cchardet from dependancy list, since unclecode is planning to remove it * docs: updated the example for proxy rotation to a working example * feat: Introduced ProxyConfig param * Add tutorial for deep crawl & update contributor list for bug fixes in feb alpha-1 * chore: update and test new dependancies * feat:Make PyPDF2 a conditional dependancy * updated tutorial and release note for v0.5 * docs: update docs for deep crawl, and fix a typo in docker-deployment markdown filename * refactor: 1. Deprecate markdown_v2 2. Make markdown backward compatible to behave as a string when needed. 3. Fix LlmConfig usage in cli 4. Deprecate markdown_v2 in cli 5. Update AsyncWebCrawler for changes in CrawlResult * fix: Bug in serialisation of markdown in acache_url * Refactor: Added deprecation errors for fit_html and fit_markdown directly on markdown. Now access them via markdown * fix: remove deprecated markdown_v2 from docker * Refactor: remove deprecated fit_markdown and fit_html from result * refactor: fix cache retrieval for markdown as a string * chore: update all docs, examples and tests with deprecation announcements for markdown_v2, fit_html, fit_markdown
2025-02-28 17:23:35 +05:30
full_markdown_length = len(result.markdown.raw_markdown)
fit_markdown_length = len(result.markdown.fit_markdown)
print(f"Full Markdown Length: {full_markdown_length}")
print(f"Fit Markdown Length: {fit_markdown_length}")
2025-01-13 19:19:58 +08:00
async def link_analysis():
crawler_config = CrawlerRunConfig(
cache_mode=CacheMode.ENABLED,
exclude_external_links=True,
exclude_social_media_links=True,
)
async with AsyncWebCrawler() as crawler:
result = await crawler.arun(
url="https://www.nbcnews.com/business",
config=crawler_config,
)
print(f"Found {len(result.links['internal'])} internal links")
print(f"Found {len(result.links['external'])} external links")
2025-01-13 19:19:58 +08:00
for link in result.links["internal"][:5]:
print(f"Href: {link['href']}\nText: {link['text']}\n")
2025-01-13 19:19:58 +08:00
# JavaScript Execution Example
async def simple_example_with_running_js_code():
print("\n--- Executing JavaScript and Using CSS Selectors ---")
browser_config = BrowserConfig(headless=True, java_script_enabled=True)
crawler_config = CrawlerRunConfig(
cache_mode=CacheMode.BYPASS,
js_code="const loadMoreButton = Array.from(document.querySelectorAll('button')).find(button => button.textContent.includes('Load More')); loadMoreButton && loadMoreButton.click();",
# wait_for="() => { return Array.from(document.querySelectorAll('article.tease-card')).length > 10; }"
)
async with AsyncWebCrawler(config=browser_config) as crawler:
result = await crawler.arun(
url="https://www.nbcnews.com/business", config=crawler_config
)
print(result.markdown[:500])
# CSS Selector Example
async def simple_example_with_css_selector():
print("\n--- Using CSS Selectors ---")
browser_config = BrowserConfig(headless=True)
crawler_config = CrawlerRunConfig(
cache_mode=CacheMode.BYPASS, css_selector=".wide-tease-item__description"
)
async with AsyncWebCrawler(config=browser_config) as crawler:
result = await crawler.arun(
url="https://www.nbcnews.com/business", config=crawler_config
)
print(result.markdown[:500])
2025-01-13 19:19:58 +08:00
async def media_handling():
2025-01-13 19:19:58 +08:00
crawler_config = CrawlerRunConfig(
cache_mode=CacheMode.BYPASS, exclude_external_images=True, screenshot=True
)
async with AsyncWebCrawler() as crawler:
result = await crawler.arun(
2025-01-13 19:19:58 +08:00
url="https://www.nbcnews.com/business", config=crawler_config
)
2025-01-13 19:19:58 +08:00
for img in result.media["images"][:5]:
print(f"Image URL: {img['src']}, Alt: {img['alt']}, Score: {img['score']}")
2025-01-13 19:19:58 +08:00
async def custom_hook_workflow(verbose=True):
async with AsyncWebCrawler() as crawler:
# Set a 'before_goto' hook to run custom code just before navigation
2025-01-13 19:19:58 +08:00
crawler.crawler_strategy.set_hook(
"before_goto",
lambda page, context: print("[Hook] Preparing to navigate..."),
)
# Perform the crawl operation
2025-01-13 19:19:58 +08:00
result = await crawler.arun(url="https://crawl4ai.com")
Release prep (#749) * fix: Update export of URLPatternFilter * chore: Add dependancy for cchardet in requirements * docs: Update example for deep crawl in release note for v0.5 * Docs: update the example for memory dispatcher * docs: updated example for crawl strategies * Refactor: Removed wrapping in if __name__==main block since this is a markdown file. * chore: removed cchardet from dependancy list, since unclecode is planning to remove it * docs: updated the example for proxy rotation to a working example * feat: Introduced ProxyConfig param * Add tutorial for deep crawl & update contributor list for bug fixes in feb alpha-1 * chore: update and test new dependancies * feat:Make PyPDF2 a conditional dependancy * updated tutorial and release note for v0.5 * docs: update docs for deep crawl, and fix a typo in docker-deployment markdown filename * refactor: 1. Deprecate markdown_v2 2. Make markdown backward compatible to behave as a string when needed. 3. Fix LlmConfig usage in cli 4. Deprecate markdown_v2 in cli 5. Update AsyncWebCrawler for changes in CrawlResult * fix: Bug in serialisation of markdown in acache_url * Refactor: Added deprecation errors for fit_html and fit_markdown directly on markdown. Now access them via markdown * fix: remove deprecated markdown_v2 from docker * Refactor: remove deprecated fit_markdown and fit_html from result * refactor: fix cache retrieval for markdown as a string * chore: update all docs, examples and tests with deprecation announcements for markdown_v2, fit_html, fit_markdown
2025-02-28 17:23:35 +05:30
print(result.markdown.raw_markdown[:500].replace("\n", " -- "))
# Proxy Example
async def use_proxy():
print("\n--- Using a Proxy ---")
browser_config = BrowserConfig(
headless=True,
proxy_config={
"server": "http://proxy.example.com:8080",
"username": "username",
"password": "password",
},
)
crawler_config = CrawlerRunConfig(cache_mode=CacheMode.BYPASS)
async with AsyncWebCrawler(config=browser_config) as crawler:
result = await crawler.arun(
url="https://www.nbcnews.com/business", config=crawler_config
)
if result.success:
print(result.markdown[:500])
# Screenshot Example
async def capture_and_save_screenshot(url: str, output_path: str):
browser_config = BrowserConfig(headless=True)
crawler_config = CrawlerRunConfig(cache_mode=CacheMode.BYPASS, screenshot=True)
async with AsyncWebCrawler(config=browser_config) as crawler:
result = await crawler.arun(url=url, config=crawler_config)
if result.success and result.screenshot:
import base64
screenshot_data = base64.b64decode(result.screenshot)
with open(output_path, "wb") as f:
f.write(screenshot_data)
print(f"Screenshot saved successfully to {output_path}")
else:
print("Failed to capture screenshot")
# LLM Extraction Example
class OpenAIModelFee(BaseModel):
model_name: str = Field(..., description="Name of the OpenAI model.")
input_fee: str = Field(..., description="Fee for input token for the OpenAI model.")
output_fee: str = Field(
..., description="Fee for output token for the OpenAI model."
)
async def extract_structured_data_using_llm(
provider: str, api_token: str = None, extra_headers: Dict[str, str] = None
):
print(f"\n--- Extracting Structured Data with {provider} ---")
if api_token is None and provider != "ollama":
print(f"API token is required for {provider}. Skipping this example.")
return
browser_config = BrowserConfig(headless=True)
extra_args = {"temperature": 0, "top_p": 0.9, "max_tokens": 2000}
if extra_headers:
extra_args["extra_headers"] = extra_headers
crawler_config = CrawlerRunConfig(
cache_mode=CacheMode.BYPASS,
word_count_threshold=1,
page_timeout=80000,
extraction_strategy=LLMExtractionStrategy(
llm_config=LLMConfig(provider=provider,api_token=api_token),
schema=OpenAIModelFee.model_json_schema(),
extraction_type="schema",
instruction="""From the crawled content, extract all mentioned model names along with their fees for input and output tokens.
Do not miss any models in the entire content.""",
extra_args=extra_args,
),
)
async with AsyncWebCrawler(config=browser_config) as crawler:
result = await crawler.arun(
url="https://openai.com/api/pricing/", config=crawler_config
)
print(result.extracted_content)
# CSS Extraction Example
async def extract_structured_data_using_css_extractor():
print("\n--- Using JsonCssExtractionStrategy for Fast Structured Output ---")
schema = {
"name": "KidoCode Courses",
"baseSelector": "section.charge-methodology .framework-collection-item.w-dyn-item",
"fields": [
{
"name": "section_title",
"selector": "h3.heading-50",
"type": "text",
},
{
"name": "section_description",
"selector": ".charge-content",
"type": "text",
},
{
"name": "course_name",
"selector": ".text-block-93",
"type": "text",
},
{
"name": "course_description",
"selector": ".course-content-text",
"type": "text",
},
{
"name": "course_icon",
"selector": ".image-92",
"type": "attribute",
"attribute": "src",
},
],
}
browser_config = BrowserConfig(headless=True, java_script_enabled=True)
js_click_tabs = """
(async () => {
const tabs = document.querySelectorAll("section.charge-methodology .tabs-menu-3 > div");
for(let tab of tabs) {
tab.scrollIntoView();
tab.click();
await new Promise(r => setTimeout(r, 500));
}
})();
"""
crawler_config = CrawlerRunConfig(
cache_mode=CacheMode.BYPASS,
extraction_strategy=JsonCssExtractionStrategy(schema),
js_code=[js_click_tabs],
delay_before_return_html=1
)
async with AsyncWebCrawler(config=browser_config) as crawler:
result = await crawler.arun(
url="https://www.kidocode.com/degrees/technology", config=crawler_config
)
companies = json.loads(result.extracted_content)
print(f"Successfully extracted {len(companies)} companies")
print(json.dumps(companies[0], indent=2))
# Dynamic Content Examples - Method 1
async def crawl_dynamic_content_pages_method_1():
print("\n--- Advanced Multi-Page Crawling with JavaScript Execution ---")
first_commit = ""
async def on_execution_started(page, **kwargs):
nonlocal first_commit
try:
while True:
await page.wait_for_selector("li.Box-sc-g0xbh4-0 h4")
commit = await page.query_selector("li.Box-sc-g0xbh4-0 h4")
commit = await commit.evaluate("(element) => element.textContent")
commit = re.sub(r"\s+", "", commit)
if commit and commit != first_commit:
first_commit = commit
break
await asyncio.sleep(0.5)
except Exception as e:
print(f"Warning: New content didn't appear after JavaScript execution: {e}")
browser_config = BrowserConfig(headless=False, java_script_enabled=True)
async with AsyncWebCrawler(config=browser_config) as crawler:
crawler.crawler_strategy.set_hook("on_execution_started", on_execution_started)
url = "https://github.com/microsoft/TypeScript/commits/main"
session_id = "typescript_commits_session"
all_commits = []
js_next_page = """
const button = document.querySelector('a[data-testid="pagination-next-button"]');
if (button) button.click();
"""
for page in range(3):
crawler_config = CrawlerRunConfig(
cache_mode=CacheMode.BYPASS,
css_selector="li.Box-sc-g0xbh4-0",
js_code=js_next_page if page > 0 else None,
js_only=page > 0,
session_id=session_id,
)
result = await crawler.arun(url=url, config=crawler_config)
assert result.success, f"Failed to crawl page {page + 1}"
soup = BeautifulSoup(result.cleaned_html, "html.parser")
commits = soup.select("li")
all_commits.extend(commits)
print(f"Page {page + 1}: Found {len(commits)} commits")
print(f"Successfully crawled {len(all_commits)} commits across 3 pages")
# Dynamic Content Examples - Method 2
async def crawl_dynamic_content_pages_method_2():
print("\n--- Advanced Multi-Page Crawling with JavaScript Execution ---")
browser_config = BrowserConfig(headless=False, java_script_enabled=True)
js_next_page_and_wait = """
(async () => {
const getCurrentCommit = () => {
const commits = document.querySelectorAll('li.Box-sc-g0xbh4-0 h4');
return commits.length > 0 ? commits[0].textContent.trim() : null;
};
const initialCommit = getCurrentCommit();
const button = document.querySelector('a[data-testid="pagination-next-button"]');
if (button) button.click();
while (true) {
await new Promise(resolve => setTimeout(resolve, 100));
const newCommit = getCurrentCommit();
if (newCommit && newCommit !== initialCommit) {
break;
}
}
})();
"""
schema = {
"name": "Commit Extractor",
"baseSelector": "li.Box-sc-g0xbh4-0",
"fields": [
{
"name": "title",
"selector": "h4.markdown-title",
"type": "text",
"transform": "strip",
},
],
}
async with AsyncWebCrawler(config=browser_config) as crawler:
url = "https://github.com/microsoft/TypeScript/commits/main"
session_id = "typescript_commits_session"
all_commits = []
extraction_strategy = JsonCssExtractionStrategy(schema)
for page in range(3):
crawler_config = CrawlerRunConfig(
cache_mode=CacheMode.BYPASS,
css_selector="li.Box-sc-g0xbh4-0",
extraction_strategy=extraction_strategy,
js_code=js_next_page_and_wait if page > 0 else None,
js_only=page > 0,
session_id=session_id,
)
result = await crawler.arun(url=url, config=crawler_config)
assert result.success, f"Failed to crawl page {page + 1}"
commits = json.loads(result.extracted_content)
all_commits.extend(commits)
print(f"Page {page + 1}: Found {len(commits)} commits")
print(f"Successfully crawled {len(all_commits)} commits across 3 pages")
async def cosine_similarity_extraction():
from crawl4ai.extraction_strategy import CosineStrategy
crawl_config = CrawlerRunConfig(
cache_mode=CacheMode.BYPASS,
extraction_strategy=CosineStrategy(
word_count_threshold=10,
2025-01-13 19:19:58 +08:00
max_dist=0.2, # Maximum distance between two words
linkage_method="ward", # Linkage method for hierarchical clustering (ward, complete, average, single)
top_k=3, # Number of top keywords to extract
sim_threshold=0.3, # Similarity threshold for clustering
semantic_filter="McDonald's economic impact, American consumer trends", # Keywords to filter the content semantically using embeddings
verbose=True,
),
)
async with AsyncWebCrawler() as crawler:
result = await crawler.arun(
url="https://www.nbcnews.com/business/consumer/how-mcdonalds-e-coli-crisis-inflation-politics-reflect-american-story-rcna177156",
2025-01-13 19:19:58 +08:00
config=crawl_config,
)
print(json.loads(result.extracted_content)[:5])
2025-01-13 19:19:58 +08:00
# Browser Comparison
async def crawl_custom_browser_type():
print("\n--- Browser Comparison ---")
# Firefox
browser_config_firefox = BrowserConfig(browser_type="firefox", headless=True)
start = time.time()
async with AsyncWebCrawler(config=browser_config_firefox) as crawler:
result = await crawler.arun(
url="https://www.example.com",
config=CrawlerRunConfig(cache_mode=CacheMode.BYPASS),
)
print("Firefox:", time.time() - start)
print(result.markdown[:500])
# WebKit
browser_config_webkit = BrowserConfig(browser_type="webkit", headless=True)
start = time.time()
async with AsyncWebCrawler(config=browser_config_webkit) as crawler:
result = await crawler.arun(
url="https://www.example.com",
config=CrawlerRunConfig(cache_mode=CacheMode.BYPASS),
)
print("WebKit:", time.time() - start)
print(result.markdown[:500])
# Chromium (default)
browser_config_chromium = BrowserConfig(browser_type="chromium", headless=True)
start = time.time()
async with AsyncWebCrawler(config=browser_config_chromium) as crawler:
result = await crawler.arun(
url="https://www.example.com",
config=CrawlerRunConfig(cache_mode=CacheMode.BYPASS),
)
print("Chromium:", time.time() - start)
print(result.markdown[:500])
# Anti-Bot and User Simulation
async def crawl_with_user_simulation():
browser_config = BrowserConfig(
headless=True,
user_agent_mode="random",
user_agent_generator_config={"device_type": "mobile", "os_type": "android"},
)
crawler_config = CrawlerRunConfig(
cache_mode=CacheMode.BYPASS,
magic=True,
simulate_user=True,
override_navigator=True,
)
async with AsyncWebCrawler(config=browser_config) as crawler:
result = await crawler.arun(url="YOUR-URL-HERE", config=crawler_config)
print(result.markdown)
2025-01-13 19:19:58 +08:00
async def ssl_certification():
# Configure crawler to fetch SSL certificate
config = CrawlerRunConfig(
fetch_ssl_certificate=True,
2025-01-13 19:19:58 +08:00
cache_mode=CacheMode.BYPASS, # Bypass cache to always get fresh certificates
)
async with AsyncWebCrawler() as crawler:
2025-01-13 19:19:58 +08:00
result = await crawler.arun(url="https://example.com", config=config)
if result.success and result.ssl_certificate:
cert = result.ssl_certificate
2025-01-13 19:19:58 +08:00
tmp_dir = os.path.join(__location__, "tmp")
os.makedirs(tmp_dir, exist_ok=True)
# 1. Access certificate properties directly
print("\nCertificate Information:")
print(f"Issuer: {cert.issuer.get('CN', '')}")
print(f"Valid until: {cert.valid_until}")
print(f"Fingerprint: {cert.fingerprint}")
2025-01-13 19:19:58 +08:00
# 2. Export certificate in different formats
cert.to_json(os.path.join(tmp_dir, "certificate.json")) # For analysis
print("\nCertificate exported to:")
print(f"- JSON: {os.path.join(tmp_dir, 'certificate.json')}")
2025-01-13 19:19:58 +08:00
pem_data = cert.to_pem(
os.path.join(tmp_dir, "certificate.pem")
) # For web servers
print(f"- PEM: {os.path.join(tmp_dir, 'certificate.pem')}")
2025-01-13 19:19:58 +08:00
der_data = cert.to_der(
os.path.join(tmp_dir, "certificate.der")
) # For Java apps
print(f"- DER: {os.path.join(tmp_dir, 'certificate.der')}")
2025-01-13 19:19:58 +08:00
# Main execution
async def main():
# Basic examples
await simple_crawl()
await simple_example_with_running_js_code()
await simple_example_with_css_selector()
# Advanced examples
await extract_structured_data_using_css_extractor()
await extract_structured_data_using_llm(
"openai/gpt-4o", os.getenv("OPENAI_API_KEY")
)
await crawl_dynamic_content_pages_method_1()
await crawl_dynamic_content_pages_method_2()
# Browser comparisons
await crawl_custom_browser_type()
# Screenshot example
await capture_and_save_screenshot(
"https://www.example.com",
os.path.join(__location__, "tmp/example_screenshot.jpg")
)
if __name__ == "__main__":
asyncio.run(main())