305 lines
9.4 KiB
Python
Raw Normal View History

import os
import json
import logging
from typing import Optional, AsyncGenerator
from urllib.parse import unquote
from fastapi import HTTPException, Request, status
from fastapi.background import BackgroundTasks
from fastapi.responses import JSONResponse
from redis import asyncio as aioredis
from crawl4ai import (
AsyncWebCrawler,
CrawlerRunConfig,
LLMExtractionStrategy,
CacheMode
)
from crawl4ai.content_filter_strategy import (
PruningContentFilter,
BM25ContentFilter,
LLMContentFilter
)
from crawl4ai.markdown_generation_strategy import DefaultMarkdownGenerator
from crawl4ai.content_scraping_strategy import LXMLWebScrapingStrategy
from utils import (
TaskStatus,
FilterType,
get_base_url,
is_task_id,
should_cleanup_task,
decode_redis_hash
)
logger = logging.getLogger(__name__)
async def process_llm_extraction(
redis: aioredis.Redis,
config: dict,
task_id: str,
url: str,
instruction: str,
schema: Optional[str] = None,
cache: str = "0"
) -> None:
"""Process LLM extraction in background."""
try:
llm_strategy = LLMExtractionStrategy(
provider=config["llm"]["provider"],
api_token=os.environ.get(config["llm"].get("api_key_env", None), ""),
instruction=instruction,
schema=json.loads(schema) if schema else None,
)
cache_mode = CacheMode.ENABLED if cache == "1" else CacheMode.BYPASS
async with AsyncWebCrawler() as crawler:
result = await crawler.arun(
url=url,
config=CrawlerRunConfig(
extraction_strategy=llm_strategy,
scraping_strategy=LXMLWebScrapingStrategy(),
cache_mode=cache_mode
)
)
if not result.success:
await redis.hset(f"task:{task_id}", mapping={
"status": TaskStatus.FAILED,
"error": result.error_message
})
return
content = json.loads(result.extracted_content)
await redis.hset(f"task:{task_id}", mapping={
"status": TaskStatus.COMPLETED,
"result": json.dumps(content)
})
except Exception as e:
logger.error(f"LLM extraction error: {str(e)}", exc_info=True)
await redis.hset(f"task:{task_id}", mapping={
"status": TaskStatus.FAILED,
"error": str(e)
})
async def handle_markdown_request(
url: str,
filter_type: FilterType,
query: Optional[str] = None,
cache: str = "0",
config: Optional[dict] = None
) -> str:
"""Handle markdown generation requests."""
try:
decoded_url = unquote(url)
if not decoded_url.startswith(('http://', 'https://')):
decoded_url = 'https://' + decoded_url
if filter_type == FilterType.RAW:
md_generator = DefaultMarkdownGenerator()
else:
content_filter = {
FilterType.FIT: PruningContentFilter(),
FilterType.BM25: BM25ContentFilter(user_query=query or ""),
FilterType.LLM: LLMContentFilter(
provider=config["llm"]["provider"],
api_token=os.environ.get(config["llm"].get("api_key_env", None), ""),
instruction=query or "Extract main content"
)
}[filter_type]
md_generator = DefaultMarkdownGenerator(content_filter=content_filter)
cache_mode = CacheMode.ENABLED if cache == "1" else CacheMode.BYPASS
async with AsyncWebCrawler() as crawler:
result = await crawler.arun(
url=decoded_url,
config=CrawlerRunConfig(
markdown_generator=md_generator,
scraping_strategy=LXMLWebScrapingStrategy(),
cache_mode=cache_mode
)
)
if not result.success:
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=result.error_message
)
return (result.markdown_v2.raw_markdown
if filter_type == FilterType.RAW
else result.markdown_v2.fit_markdown)
except Exception as e:
logger.error(f"Markdown error: {str(e)}", exc_info=True)
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=str(e)
)
async def handle_llm_request(
redis: aioredis.Redis,
background_tasks: BackgroundTasks,
request: Request,
input_path: str,
query: Optional[str] = None,
schema: Optional[str] = None,
cache: str = "0",
config: Optional[dict] = None
) -> JSONResponse:
"""Handle LLM extraction requests."""
base_url = get_base_url(request)
try:
if is_task_id(input_path):
return await handle_task_status(
redis, input_path, base_url
)
if not query:
return JSONResponse({
"message": "Please provide an instruction",
"_links": {
"example": {
"href": f"{base_url}/llm/{input_path}?q=Extract+main+content",
"title": "Try this example"
}
}
})
return await create_new_task(
redis,
background_tasks,
input_path,
query,
schema,
cache,
base_url,
config
)
except Exception as e:
logger.error(f"LLM endpoint error: {str(e)}", exc_info=True)
return JSONResponse({
"error": str(e),
"_links": {
"retry": {"href": str(request.url)}
}
}, status_code=status.HTTP_500_INTERNAL_SERVER_ERROR)
async def handle_task_status(
redis: aioredis.Redis,
task_id: str,
base_url: str
) -> JSONResponse:
"""Handle task status check requests."""
task = await redis.hgetall(f"task:{task_id}")
if not task:
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail="Task not found"
)
task = decode_redis_hash(task)
response = create_task_response(task, task_id, base_url)
if task["status"] in [TaskStatus.COMPLETED, TaskStatus.FAILED]:
if should_cleanup_task(task["created_at"]):
await redis.delete(f"task:{task_id}")
return JSONResponse(response)
async def create_new_task(
redis: aioredis.Redis,
background_tasks: BackgroundTasks,
input_path: str,
query: str,
schema: Optional[str],
cache: str,
base_url: str,
config: dict
) -> JSONResponse:
"""Create and initialize a new task."""
decoded_url = unquote(input_path)
if not decoded_url.startswith(('http://', 'https://')):
decoded_url = 'https://' + decoded_url
from datetime import datetime
task_id = f"llm_{int(datetime.now().timestamp())}_{id(background_tasks)}"
await redis.hset(f"task:{task_id}", mapping={
"status": TaskStatus.PROCESSING,
"created_at": datetime.now().isoformat(),
"url": decoded_url
})
background_tasks.add_task(
process_llm_extraction,
redis,
config,
task_id,
decoded_url,
query,
schema,
cache
)
return JSONResponse({
"task_id": task_id,
"status": TaskStatus.PROCESSING,
"url": decoded_url,
"_links": {
"self": {"href": f"{base_url}/llm/{task_id}"},
"status": {"href": f"{base_url}/llm/{task_id}"}
}
})
def create_task_response(task: dict, task_id: str, base_url: str) -> dict:
"""Create response for task status check."""
response = {
"task_id": task_id,
"status": task["status"],
"created_at": task["created_at"],
"url": task["url"],
"_links": {
"self": {"href": f"{base_url}/llm/{task_id}"},
"refresh": {"href": f"{base_url}/llm/{task_id}"}
}
}
if task["status"] == TaskStatus.COMPLETED:
response["result"] = json.loads(task["result"])
elif task["status"] == TaskStatus.FAILED:
response["error"] = task["error"]
return response
async def stream_results(crawler: AsyncWebCrawler, results_gen: AsyncGenerator) -> AsyncGenerator[bytes, None]:
"""Stream results with heartbeats and completion markers."""
import asyncio
import json
from utils import datetime_handler
try:
async for result in results_gen:
try:
result_dict = result.model_dump()
logger.info(f"Streaming result for {result_dict.get('url', 'unknown')}")
data = json.dumps(result_dict, default=datetime_handler) + "\n"
yield data.encode('utf-8')
except Exception as e:
logger.error(f"Serialization error: {e}")
error_response = {"error": str(e), "url": getattr(result, 'url', 'unknown')}
yield (json.dumps(error_response) + "\n").encode('utf-8')
yield json.dumps({"status": "completed"}).encode('utf-8')
except asyncio.CancelledError:
logger.warning("Client disconnected during streaming")
finally:
try:
await crawler.close()
except Exception as e:
logger.error(f"Crawler cleanup error: {e}")