crawl4ai/docs/md_v2/advanced/multi-url-crawling.md

264 lines
9.5 KiB
Markdown
Raw Normal View History

# Optimized Multi-URL Crawling
> **Note**: Were developing a new **executor module** that uses a sophisticated algorithm to dynamically manage multi-URL crawling, optimizing for speed and memory usage. The approaches in this document remain fully valid, but keep an eye on **Crawl4AI**s upcoming releases for this powerful feature! Follow [@unclecode](https://twitter.com/unclecode) on X and check the changelogs to stay updated.
Crawl4AIs **AsyncWebCrawler** can handle multiple URLs in a single run, which can greatly reduce overhead and speed up crawling. This guide shows how to:
1. **Sequentially** crawl a list of URLs using the **same** session, avoiding repeated browser creation.
2. **Parallel**-crawl subsets of URLs in batches, again reusing the same browser.
When the entire process finishes, you close the browser once—**minimizing** memory and resource usage.
---
## 1. Why Avoid Simple Loops per URL?
If you naively do:
```python
for url in urls:
async with AsyncWebCrawler() as crawler:
result = await crawler.arun(url)
```
You end up:
1. Spinning up a **new** browser for each URL
2. Closing it immediately after the single crawl
3. Potentially using a lot of CPU/memory for short-living browsers
4. Missing out on session reusability if you have login or ongoing states
**Better** approaches ensure you **create** the browser once, then crawl multiple URLs with minimal overhead.
---
## 2. Sequential Crawling with Session Reuse
### 2.1 Overview
1. **One** `AsyncWebCrawler` instance for **all** URLs.
2. **One** session (via `session_id`) so we can preserve local storage or cookies across URLs if needed.
3. The crawler is only closed at the **end**.
**This** is the simplest pattern if your workload is moderate (dozens to a few hundred URLs).
### 2.2 Example Code
```python
import asyncio
from typing import List
from crawl4ai import AsyncWebCrawler, BrowserConfig, CrawlerRunConfig
from crawl4ai.markdown_generation_strategy import DefaultMarkdownGenerator
async def crawl_sequential(urls: List[str]):
print("\n=== Sequential Crawling with Session Reuse ===")
browser_config = BrowserConfig(
headless=True,
# For better performance in Docker or low-memory environments:
extra_args=["--disable-gpu", "--disable-dev-shm-usage", "--no-sandbox"],
)
crawl_config = CrawlerRunConfig(
markdown_generator=DefaultMarkdownGenerator()
)
# Create the crawler (opens the browser)
crawler = AsyncWebCrawler(config=browser_config)
await crawler.start()
try:
session_id = "session1" # Reuse the same session across all URLs
for url in urls:
result = await crawler.arun(
url=url,
config=crawl_config,
session_id=session_id
)
if result.success:
print(f"Successfully crawled: {url}")
# E.g. check markdown length
print(f"Markdown length: {len(result.markdown_v2.raw_markdown)}")
else:
print(f"Failed: {url} - Error: {result.error_message}")
finally:
# After all URLs are done, close the crawler (and the browser)
await crawler.close()
async def main():
urls = [
"https://example.com/page1",
"https://example.com/page2",
"https://example.com/page3"
]
await crawl_sequential(urls)
if __name__ == "__main__":
asyncio.run(main())
```
**Why Its Good**:
- **One** browser launch.
- Minimal memory usage.
- If the site requires login, you can log in once in `session_id` context and preserve auth across all URLs.
---
## 3. Parallel Crawling with Browser Reuse
### 3.1 Overview
To speed up crawling further, you can crawl multiple URLs in **parallel** (batches or a concurrency limit). The crawler still uses **one** browser, but spawns different sessions (or the same, depending on your logic) for each task.
### 3.2 Example Code
For this example make sure to install the [psutil](https://pypi.org/project/psutil/) package.
```bash
pip install psutil
```
Then you can run the following code:
```python
import os
import sys
import psutil
import asyncio
__location__ = os.path.dirname(os.path.abspath(__file__))
__output__ = os.path.join(__location__, "output")
# Append parent directory to system path
parent_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
sys.path.append(parent_dir)
from typing import List
from crawl4ai import AsyncWebCrawler, BrowserConfig, CrawlerRunConfig, CacheMode
async def crawl_parallel(urls: List[str], max_concurrent: int = 3):
print("\n=== Parallel Crawling with Browser Reuse + Memory Check ===")
# We'll keep track of peak memory usage across all tasks
peak_memory = 0
process = psutil.Process(os.getpid())
def log_memory(prefix: str = ""):
nonlocal peak_memory
current_mem = process.memory_info().rss # in bytes
if current_mem > peak_memory:
peak_memory = current_mem
print(f"{prefix} Current Memory: {current_mem // (1024 * 1024)} MB, Peak: {peak_memory // (1024 * 1024)} MB")
# Minimal browser config
browser_config = BrowserConfig(
headless=True,
verbose=False, # corrected from 'verbos=False'
extra_args=["--disable-gpu", "--disable-dev-shm-usage", "--no-sandbox"],
)
crawl_config = CrawlerRunConfig(cache_mode=CacheMode.BYPASS)
# Create the crawler instance
crawler = AsyncWebCrawler(config=browser_config)
await crawler.start()
try:
# We'll chunk the URLs in batches of 'max_concurrent'
success_count = 0
fail_count = 0
for i in range(0, len(urls), max_concurrent):
batch = urls[i : i + max_concurrent]
tasks = []
for j, url in enumerate(batch):
# Unique session_id per concurrent sub-task
session_id = f"parallel_session_{i + j}"
task = crawler.arun(url=url, config=crawl_config, session_id=session_id)
tasks.append(task)
# Check memory usage prior to launching tasks
log_memory(prefix=f"Before batch {i//max_concurrent + 1}: ")
# Gather results
results = await asyncio.gather(*tasks, return_exceptions=True)
# Check memory usage after tasks complete
log_memory(prefix=f"After batch {i//max_concurrent + 1}: ")
# Evaluate results
for url, result in zip(batch, results):
if isinstance(result, Exception):
print(f"Error crawling {url}: {result}")
fail_count += 1
elif result.success:
success_count += 1
else:
fail_count += 1
print(f"\nSummary:")
print(f" - Successfully crawled: {success_count}")
print(f" - Failed: {fail_count}")
finally:
print("\nClosing crawler...")
await crawler.close()
# Final memory log
log_memory(prefix="Final: ")
print(f"\nPeak memory usage (MB): {peak_memory // (1024 * 1024)}")
async def main():
urls = [
"https://example.com/page1",
"https://example.com/page2",
"https://example.com/page3",
"https://example.com/page4"
]
await crawl_parallel(urls, max_concurrent=2)
if __name__ == "__main__":
asyncio.run(main())
```
**Notes**:
- We **reuse** the same `AsyncWebCrawler` instance for all parallel tasks, launching **one** browser.
- Each parallel sub-task might get its own `session_id` so they dont share cookies/localStorage (unless thats desired).
- We limit concurrency to `max_concurrent=2` or 3 to avoid saturating CPU/memory.
---
## 4. Performance Tips
1. **Extra Browser Args**
- `--disable-gpu`, `--no-sandbox` can help in Docker or restricted environments.
- `--disable-dev-shm-usage` avoids using `/dev/shm` which can be small on some systems.
2. **Session Reuse**
- If your site requires a login or you want to maintain local data across URLs, share the **same** `session_id`.
- If you want isolation (each URL fresh), create unique sessions.
3. **Batching**
- If you have **many** URLs (like thousands), you can do parallel crawling in chunks (like `max_concurrent=5`).
- Use `arun_many()` for a built-in approach if you prefer, but the example above is often more flexible.
4. **Cache**
- If your pages share many resources or youre re-crawling the same domain repeatedly, consider setting `cache_mode=CacheMode.ENABLED` in `CrawlerRunConfig`.
- If you need fresh data each time, keep `cache_mode=CacheMode.BYPASS`.
5. **Hooks**
- You can set up global hooks for each crawler (like to block images) or per-run if you want.
- Keep them consistent if youre reusing sessions.
---
## 5. Summary
- **One** `AsyncWebCrawler` + multiple calls to `.arun()` is far more efficient than launching a new crawler per URL.
- **Sequential** approach with a shared session is simple and memory-friendly for moderate sets of URLs.
- **Parallel** approach can speed up large crawls by concurrency, but keep concurrency balanced to avoid overhead.
- Close the crawler once at the end, ensuring the browser is only opened/closed once.
For even more advanced memory optimizations or dynamic concurrency patterns, see future sections on hooking or distributed crawling. The patterns above suffice for the majority of multi-URL scenarios—**giving you speed, simplicity, and minimal resource usage**. Enjoy your optimized crawling!