crawl4ai/docs/md_v2/advanced/multi-url-crawling.md

206 lines
6.0 KiB
Markdown
Raw Normal View History

# Advanced Multi-URL Crawling with Dispatchers
> **Heads Up**: Crawl4AI supports advanced dispatchers for **parallel** or **throttled** crawling, providing dynamic rate limiting and memory usage checks. The built-in `arun_many()` function uses these dispatchers to handle concurrency efficiently.
## 1. Introduction
When crawling many URLs:
- **Basic**: Use `arun()` in a loop (simple but less efficient)
- **Better**: Use `arun_many()`, which efficiently handles multiple URLs with proper concurrency control
- **Best**: Customize dispatcher behavior for your specific needs (memory management, rate limits, etc.)
**Why Dispatchers?**
- **Adaptive**: Memory-based dispatchers can pause or slow down based on system resources
- **Rate-limiting**: Built-in rate limiting with exponential backoff for 429/503 responses
- **Real-time Monitoring**: Live dashboard of ongoing tasks, memory usage, and performance
- **Flexibility**: Choose between memory-adaptive or semaphore-based concurrency
## 2. Core Components
### 2.1 Rate Limiter
```python
class RateLimiter:
def __init__(
base_delay: Tuple[float, float] = (1.0, 3.0), # Random delay range between requests
max_delay: float = 60.0, # Maximum backoff delay
max_retries: int = 3, # Retries before giving up
rate_limit_codes: List[int] = [429, 503] # Status codes triggering backoff
)
```
The RateLimiter provides:
- Random delays between requests
- Exponential backoff on rate limit responses
- Domain-specific rate limiting
- Automatic retry handling
### 2.2 Crawler Monitor
The CrawlerMonitor provides real-time visibility into crawling operations:
```python
monitor = CrawlerMonitor(
max_visible_rows=15, # Maximum rows in live display
display_mode=DisplayMode.DETAILED # DETAILED or AGGREGATED view
)
```
**Display Modes**:
1. **DETAILED**: Shows individual task status, memory usage, and timing
2. **AGGREGATED**: Displays summary statistics and overall progress
## 3. Available Dispatchers
### 3.1 MemoryAdaptiveDispatcher (Default)
Automatically manages concurrency based on system memory usage:
```python
dispatcher = MemoryAdaptiveDispatcher(
memory_threshold_percent=70.0, # Pause if memory exceeds this
check_interval=1.0, # How often to check memory
max_session_permit=10, # Maximum concurrent tasks
rate_limiter=RateLimiter( # Optional rate limiting
base_delay=(1.0, 2.0),
max_delay=30.0,
max_retries=2
),
monitor=CrawlerMonitor( # Optional monitoring
max_visible_rows=15,
display_mode=DisplayMode.DETAILED
)
)
```
### 3.2 SemaphoreDispatcher
Provides simple concurrency control with a fixed limit:
```python
dispatcher = SemaphoreDispatcher(
semaphore_count=5, # Fixed concurrent tasks
rate_limiter=RateLimiter( # Optional rate limiting
base_delay=(0.5, 1.0),
max_delay=10.0
),
monitor=CrawlerMonitor( # Optional monitoring
max_visible_rows=15,
display_mode=DisplayMode.DETAILED
)
)
```
## 4. Usage Examples
### 4.1 Simple Usage (Default MemoryAdaptiveDispatcher)
```python
async with AsyncWebCrawler(config=browser_config) as crawler:
results = await crawler.arun_many(urls, config=run_config)
```
### 4.2 Memory Adaptive with Rate Limiting
```python
async def crawl_with_memory_adaptive(urls):
browser_config = BrowserConfig(headless=True, verbose=False)
run_config = CrawlerRunConfig(cache_mode=CacheMode.BYPASS)
dispatcher = MemoryAdaptiveDispatcher(
memory_threshold_percent=70.0,
max_session_permit=10,
rate_limiter=RateLimiter(
base_delay=(1.0, 2.0),
max_delay=30.0,
max_retries=2
),
monitor=CrawlerMonitor(
max_visible_rows=15,
display_mode=DisplayMode.DETAILED
)
)
async with AsyncWebCrawler(config=browser_config) as crawler:
results = await crawler.arun_many(
urls,
config=run_config,
dispatcher=dispatcher
)
return results
```
### 4.3 Semaphore with Rate Limiting
```python
async def crawl_with_semaphore(urls):
browser_config = BrowserConfig(headless=True, verbose=False)
run_config = CrawlerRunConfig(cache_mode=CacheMode.BYPASS)
dispatcher = SemaphoreDispatcher(
semaphore_count=5,
rate_limiter=RateLimiter(
base_delay=(0.5, 1.0),
max_delay=10.0
),
monitor=CrawlerMonitor(
max_visible_rows=15,
display_mode=DisplayMode.DETAILED
)
)
async with AsyncWebCrawler(config=browser_config) as crawler:
results = await crawler.arun_many(
urls,
config=run_config,
dispatcher=dispatcher
)
return results
```
## 5. Dispatch Results
Each crawl result includes dispatch information:
```python
@dataclass
class DispatchResult:
task_id: str
memory_usage: float
peak_memory: float
start_time: datetime
end_time: datetime
error_message: str = ""
```
Access via `result.dispatch_result`:
```python
for result in results:
if result.success:
dr = result.dispatch_result
print(f"URL: {result.url}")
print(f"Memory: {dr.memory_usage:.1f}MB")
print(f"Duration: {dr.end_time - dr.start_time}")
```
## 6. Summary
1. **Two Dispatcher Types**:
- MemoryAdaptiveDispatcher (default): Dynamic concurrency based on memory
- SemaphoreDispatcher: Fixed concurrency limit
2. **Optional Components**:
- RateLimiter: Smart request pacing and backoff
- CrawlerMonitor: Real-time progress visualization
3. **Key Benefits**:
- Automatic memory management
- Built-in rate limiting
- Live progress monitoring
- Flexible concurrency control
Choose the dispatcher that best fits your needs:
- **MemoryAdaptiveDispatcher**: For large crawls or limited resources
- **SemaphoreDispatcher**: For simple, fixed-concurrency scenarios