crawl4ai/docs/md_v2/core/quickstart.md

390 lines
14 KiB
Markdown
Raw Normal View History

# Getting Started with Crawl4AI
Welcome to **Crawl4AI**, an open-source LLM-friendly Web Crawler & Scraper. In this tutorial, youll:
1. Run your **first crawl** using minimal configuration.
2. Generate **Markdown** output (and learn how its influenced by content filters).
3. Experiment with a simple **CSS-based extraction** strategy.
4. See a glimpse of **LLM-based extraction** (including open-source and closed-source model options).
5. Crawl a **dynamic** page that loads content via JavaScript.
---
## 1. Introduction
Crawl4AI provides:
- An asynchronous crawler, **`AsyncWebCrawler`**.
- Configurable browser and run settings via **`BrowserConfig`** and **`CrawlerRunConfig`**.
- Automatic HTML-to-Markdown conversion via **`DefaultMarkdownGenerator`** (supports optional filters).
- Multiple extraction strategies (LLM-based or “traditional” CSS/XPath-based).
By the end of this guide, youll have performed a basic crawl, generated Markdown, tried out two extraction strategies, and crawled a dynamic page that uses “Load More” buttons or JavaScript updates.
---
## 2. Your First Crawl
Heres a minimal Python script that creates an **`AsyncWebCrawler`**, fetches a webpage, and prints the first 300 characters of its Markdown output:
```python
import asyncio
from crawl4ai import AsyncWebCrawler
async def main():
async with AsyncWebCrawler() as crawler:
result = await crawler.arun("https://example.com")
print(result.markdown[:300]) # Print first 300 chars
if __name__ == "__main__":
asyncio.run(main())
```
**Whats happening?**
- **`AsyncWebCrawler`** launches a headless browser (Chromium by default).
- It fetches `https://example.com`.
- Crawl4AI automatically converts the HTML into Markdown.
You now have a simple, working crawl!
---
## 3. Basic Configuration (Light Introduction)
Crawl4AIs crawler can be heavily customized using two main classes:
1. **`BrowserConfig`**: Controls browser behavior (headless or full UI, user agent, JavaScript toggles, etc.).
2. **`CrawlerRunConfig`**: Controls how each crawl runs (caching, extraction, timeouts, hooking, etc.).
Below is an example with minimal usage:
```python
import asyncio
from crawl4ai import AsyncWebCrawler, BrowserConfig, CrawlerRunConfig, CacheMode
async def main():
browser_conf = BrowserConfig(headless=True) # or False to see the browser
run_conf = CrawlerRunConfig(
cache_mode=CacheMode.BYPASS
)
async with AsyncWebCrawler(config=browser_conf) as crawler:
result = await crawler.arun(
url="https://example.com",
config=run_conf
)
print(result.markdown)
if __name__ == "__main__":
asyncio.run(main())
```
> IMPORTANT: By default cache mode is set to `CacheMode.ENABLED`. So to have fresh content, you need to set it to `CacheMode.BYPASS`
Well explore more advanced config in later tutorials (like enabling proxies, PDF output, multi-tab sessions, etc.). For now, just note how you pass these objects to manage crawling.
---
## 4. Generating Markdown Output
By default, Crawl4AI automatically generates Markdown from each crawled page. However, the exact output depends on whether you specify a **markdown generator** or **content filter**.
- **`result.markdown`**:
The direct HTML-to-Markdown conversion.
- **`result.markdown.fit_markdown`**:
The same content after applying any configured **content filter** (e.g., `PruningContentFilter`).
### Example: Using a Filter with `DefaultMarkdownGenerator`
```python
from crawl4ai import AsyncWebCrawler, CrawlerRunConfig
from crawl4ai.content_filter_strategy import PruningContentFilter
from crawl4ai.markdown_generation_strategy import DefaultMarkdownGenerator
md_generator = DefaultMarkdownGenerator(
content_filter=PruningContentFilter(threshold=0.4, threshold_type="fixed")
)
config = CrawlerRunConfig(
cache_mode=CacheMode.BYPASS,
markdown_generator=md_generator
)
async with AsyncWebCrawler() as crawler:
result = await crawler.arun("https://news.ycombinator.com", config=config)
print("Raw Markdown length:", len(result.markdown.raw_markdown))
print("Fit Markdown length:", len(result.markdown.fit_markdown))
```
**Note**: If you do **not** specify a content filter or markdown generator, youll typically see only the raw Markdown. `PruningContentFilter` may adds around `50ms` in processing time. Well dive deeper into these strategies in a dedicated **Markdown Generation** tutorial.
---
## 5. Simple Data Extraction (CSS-based)
Crawl4AI can also extract structured data (JSON) using CSS or XPath selectors. Below is a minimal CSS-based example:
```python
import asyncio
import json
from crawl4ai import AsyncWebCrawler, CrawlerRunConfig, CacheMode
from crawl4ai.extraction_strategy import JsonCssExtractionStrategy
async def main():
schema = {
"name": "Example Items",
"baseSelector": "div.item",
"fields": [
{"name": "title", "selector": "h2", "type": "text"},
{"name": "link", "selector": "a", "type": "attribute", "attribute": "href"}
]
}
raw_html = "<div class='item'><h2>Item 1</h2><a href='https://example.com/item1'>Link 1</a></div>"
async with AsyncWebCrawler() as crawler:
result = await crawler.arun(
url="raw://" + raw_html,
config=CrawlerRunConfig(
cache_mode=CacheMode.BYPASS,
extraction_strategy=JsonCssExtractionStrategy(schema)
)
)
# The JSON output is stored in 'extracted_content'
data = json.loads(result.extracted_content)
print(data)
if __name__ == "__main__":
asyncio.run(main())
```
**Why is this helpful?**
- Great for repetitive page structures (e.g., item listings, articles).
- No AI usage or costs.
- The crawler returns a JSON string you can parse or store.
> Tips: You can pass raw HTML to the crawler instead of a URL. To do so, prefix the HTML with `raw://`.
---
## 6. Simple Data Extraction (LLM-based)
For more complex or irregular pages, a language model can parse text intelligently into a structure you define. Crawl4AI supports **open-source** or **closed-source** providers:
- **Open-Source Models** (e.g., `ollama/llama3.3`, `no_token`)
- **OpenAI Models** (e.g., `openai/gpt-4`, requires `api_token`)
- Or any provider supported by the underlying library
Below is an example using **open-source** style (no token) and closed-source:
```python
import os
import json
import asyncio
from pydantic import BaseModel, Field
from crawl4ai import AsyncWebCrawler, CrawlerRunConfig
from crawl4ai.extraction_strategy import LLMExtractionStrategy
class OpenAIModelFee(BaseModel):
model_name: str = Field(..., description="Name of the OpenAI model.")
input_fee: str = Field(..., description="Fee for input token for the OpenAI model.")
output_fee: str = Field(
..., description="Fee for output token for the OpenAI model."
)
async def extract_structured_data_using_llm(
provider: str, api_token: str = None, extra_headers: Dict[str, str] = None
):
print(f"\n--- Extracting Structured Data with {provider} ---")
if api_token is None and provider != "ollama":
print(f"API token is required for {provider}. Skipping this example.")
return
browser_config = BrowserConfig(headless=True)
extra_args = {"temperature": 0, "top_p": 0.9, "max_tokens": 2000}
if extra_headers:
extra_args["extra_headers"] = extra_headers
crawler_config = CrawlerRunConfig(
cache_mode=CacheMode.BYPASS,
word_count_threshold=1,
page_timeout=80000,
extraction_strategy=LLMExtractionStrategy(
provider=provider,
api_token=api_token,
schema=OpenAIModelFee.model_json_schema(),
extraction_type="schema",
instruction="""From the crawled content, extract all mentioned model names along with their fees for input and output tokens.
Do not miss any models in the entire content.""",
extra_args=extra_args,
),
)
async with AsyncWebCrawler(config=browser_config) as crawler:
result = await crawler.arun(
url="https://openai.com/api/pricing/", config=crawler_config
)
print(result.extracted_content)
if __name__ == "__main__":
# Use ollama with llama3.3
# asyncio.run(
# extract_structured_data_using_llm(
# provider="ollama/llama3.3", api_token="no-token"
# )
# )
asyncio.run(
extract_structured_data_using_llm(
provider="openai/gpt-4o", api_token=os.getenv("OPENAI_API_KEY")
)
)
```
**Whats happening?**
- We define a Pydantic schema (`PricingInfo`) describing the fields we want.
- The LLM extraction strategy uses that schema and your instructions to transform raw text into structured JSON.
- Depending on the **provider** and **api_token**, you can use local models or a remote API.
---
## 7. Multi-URL Concurrency (Preview)
If you need to crawl multiple URLs in **parallel**, you can use `arun_many()`. By default, Crawl4AI employs a **MemoryAdaptiveDispatcher**, automatically adjusting concurrency based on system resources. Heres a quick glimpse:
```python
import asyncio
from crawl4ai import AsyncWebCrawler, CrawlerRunConfig, CacheMode
async def quick_parallel_example():
urls = [
"https://example.com/page1",
"https://example.com/page2",
"https://example.com/page3"
]
run_conf = CrawlerRunConfig(cache_mode=CacheMode.BYPASS)
async with AsyncWebCrawler() as crawler:
results = await crawler.arun_many(urls, config=run_conf)
for res in results:
if res.success:
print(f"[OK] {res.url}, length: {len(res.markdown_v2.raw_markdown)}")
else:
print(f"[ERROR] {res.url} => {res.error_message}")
if __name__ == "__main__":
asyncio.run(quick_parallel_example())
```
For more advanced concurrency (e.g., a **semaphore-based** approach, **adaptive memory usage throttling**, or customized rate limiting), see [Advanced Multi-URL Crawling](../advanced/multi-url-crawling.md).
## 8. Dynamic Content Example
Some sites require multiple “page clicks” or dynamic JavaScript updates. Below is an example showing how to **click** a “Next Page” button and wait for new commits to load on GitHub, using **`BrowserConfig`** and **`CrawlerRunConfig`**:
```python
import asyncio
from crawl4ai import AsyncWebCrawler, BrowserConfig, CrawlerRunConfig, CacheMode
from crawl4ai.extraction_strategy import JsonCssExtractionStrategy
async def extract_structured_data_using_css_extractor():
print("\n--- Using JsonCssExtractionStrategy for Fast Structured Output ---")
schema = {
"name": "KidoCode Courses",
"baseSelector": "section.charge-methodology .w-tab-content > div",
"fields": [
{
"name": "section_title",
"selector": "h3.heading-50",
"type": "text",
},
{
"name": "section_description",
"selector": ".charge-content",
"type": "text",
},
{
"name": "course_name",
"selector": ".text-block-93",
"type": "text",
},
{
"name": "course_description",
"selector": ".course-content-text",
"type": "text",
},
{
"name": "course_icon",
"selector": ".image-92",
"type": "attribute",
"attribute": "src",
},
],
}
browser_config = BrowserConfig(headless=True, java_script_enabled=True)
js_click_tabs = """
(async () => {
const tabs = document.querySelectorAll("section.charge-methodology .tabs-menu-3 > div");
for(let tab of tabs) {
tab.scrollIntoView();
tab.click();
await new Promise(r => setTimeout(r, 500));
}
})();
"""
crawler_config = CrawlerRunConfig(
cache_mode=CacheMode.BYPASS,
extraction_strategy=JsonCssExtractionStrategy(schema),
js_code=[js_click_tabs],
)
async with AsyncWebCrawler(config=browser_config) as crawler:
result = await crawler.arun(
url="https://www.kidocode.com/degrees/technology", config=crawler_config
)
companies = json.loads(result.extracted_content)
print(f"Successfully extracted {len(companies)} companies")
print(json.dumps(companies[0], indent=2))
async def main():
await extract_structured_data_using_css_extractor()
if __name__ == "__main__":
asyncio.run(main())
```
**Key Points**:
- **`BrowserConfig(headless=False)`**: We want to watch it click “Next Page.”
- **`CrawlerRunConfig(...)`**: We specify the extraction strategy, pass `session_id` to reuse the same page.
- **`js_code`** and **`wait_for`** are used for subsequent pages (`page > 0`) to click the “Next” button and wait for new commits to load.
- **`js_only=True`** indicates were not re-navigating but continuing the existing session.
- Finally, we call `kill_session()` to clean up the page and browser session.
---
## 9. Next Steps
Congratulations! You have:
1. Performed a basic crawl and printed Markdown.
2. Used **content filters** with a markdown generator.
3. Extracted JSON via **CSS** or **LLM** strategies.
4. Handled **dynamic** pages with JavaScript triggers.
If youre ready for more, check out:
- **Installation**: A deeper dive into advanced installs, Docker usage (experimental), or optional dependencies.
- **Hooks & Auth**: Learn how to run custom JavaScript or handle logins with cookies, local storage, etc.
- **Deployment**: Explore ephemeral testing in Docker or plan for the upcoming stable Docker release.
- **Browser Management**: Delve into user simulation, stealth modes, and concurrency best practices.
Crawl4AI is a powerful, flexible tool. Enjoy building out your scrapers, data pipelines, or AI-driven extraction flows. Happy crawling!