crawl4ai/docs/examples/tmp/research_assistant_audio_not_completed.py

239 lines
7.2 KiB
Python
Raw Normal View History

# Make sure to install the required packageschainlit and groq
2024-06-21 17:56:54 +08:00
import os, time
from openai import AsyncOpenAI
import chainlit as cl
import re
import requests
from io import BytesIO
from chainlit.element import ElementBased
from groq import Groq
# Import threadpools to run the crawl_url function in a separate thread
from concurrent.futures import ThreadPoolExecutor
client = AsyncOpenAI(base_url="https://api.groq.com/openai/v1", api_key=os.getenv("GROQ_API_KEY"))
# Instrument the OpenAI client
cl.instrument_openai()
settings = {
"model": "llama3-8b-8192",
"temperature": 0.5,
"max_tokens": 500,
"top_p": 1,
"frequency_penalty": 0,
"presence_penalty": 0,
}
def extract_urls(text):
url_pattern = re.compile(r'(https?://\S+)')
return url_pattern.findall(text)
def crawl_url(url):
data = {
"urls": [url],
"include_raw_html": True,
"word_count_threshold": 10,
"extraction_strategy": "NoExtractionStrategy",
"chunking_strategy": "RegexChunking"
}
response = requests.post("https://crawl4ai.com/crawl", json=data)
response_data = response.json()
response_data = response_data['results'][0]
return response_data['markdown']
@cl.on_chat_start
async def on_chat_start():
cl.user_session.set("session", {
"history": [],
"context": {}
})
await cl.Message(
content="Welcome to the chat! How can I assist you today?"
).send()
@cl.on_message
async def on_message(message: cl.Message):
user_session = cl.user_session.get("session")
# Extract URLs from the user's message
urls = extract_urls(message.content)
futures = []
with ThreadPoolExecutor() as executor:
for url in urls:
futures.append(executor.submit(crawl_url, url))
results = [future.result() for future in futures]
for url, result in zip(urls, results):
ref_number = f"REF_{len(user_session['context']) + 1}"
user_session["context"][ref_number] = {
"url": url,
"content": result
}
# for url in urls:
# # Crawl the content of each URL and add it to the session context with a reference number
# ref_number = f"REF_{len(user_session['context']) + 1}"
# crawled_content = crawl_url(url)
# user_session["context"][ref_number] = {
# "url": url,
# "content": crawled_content
# }
user_session["history"].append({
"role": "user",
"content": message.content
})
# Create a system message that includes the context
context_messages = [
f'<appendix ref="{ref}">\n{data["content"]}\n</appendix>'
for ref, data in user_session["context"].items()
]
if context_messages:
system_message = {
"role": "system",
"content": (
"You are a helpful bot. Use the following context for answering questions. "
"Refer to the sources using the REF number in square brackets, e.g., [1], only if the source is given in the appendices below.\n\n"
"If the question requires any information from the provided appendices or context, refer to the sources. "
"If not, there is no need to add a references section. "
"At the end of your response, provide a reference section listing the URLs and their REF numbers only if sources from the appendices were used.\n\n"
"\n\n".join(context_messages)
)
}
else:
system_message = {
"role": "system",
"content": "You are a helpful assistant."
}
msg = cl.Message(content="")
await msg.send()
# Get response from the LLM
stream = await client.chat.completions.create(
messages=[
system_message,
*user_session["history"]
],
stream=True,
**settings
)
assistant_response = ""
async for part in stream:
if token := part.choices[0].delta.content:
assistant_response += token
await msg.stream_token(token)
# Add assistant message to the history
user_session["history"].append({
"role": "assistant",
"content": assistant_response
})
await msg.update()
# Append the reference section to the assistant's response
reference_section = "\n\nReferences:\n"
for ref, data in user_session["context"].items():
reference_section += f"[{ref.split('_')[1]}]: {data['url']}\n"
msg.content += reference_section
await msg.update()
@cl.on_audio_chunk
async def on_audio_chunk(chunk: cl.AudioChunk):
if chunk.isStart:
buffer = BytesIO()
# This is required for whisper to recognize the file type
buffer.name = f"input_audio.{chunk.mimeType.split('/')[1]}"
# Initialize the session for a new audio stream
cl.user_session.set("audio_buffer", buffer)
cl.user_session.set("audio_mime_type", chunk.mimeType)
# Write the chunks to a buffer and transcribe the whole audio at the end
cl.user_session.get("audio_buffer").write(chunk.data)
pass
@cl.step(type="tool")
async def speech_to_text(audio_file):
cli = Groq()
# response = cli.audio.transcriptions.create(
# file=audio_file, #(filename, file.read()),
# model="whisper-large-v3",
# )
response = await client.audio.transcriptions.create(
model="whisper-large-v3", file=audio_file
)
return response.text
@cl.on_audio_end
async def on_audio_end(elements: list[ElementBased]):
# Get the audio buffer from the session
audio_buffer: BytesIO = cl.user_session.get("audio_buffer")
audio_buffer.seek(0) # Move the file pointer to the beginning
audio_file = audio_buffer.read()
audio_mime_type: str = cl.user_session.get("audio_mime_type")
# input_audio_el = cl.Audio(
# mime=audio_mime_type, content=audio_file, name=audio_buffer.name
# )
# await cl.Message(
# author="You",
# type="user_message",
# content="",
# elements=[input_audio_el, *elements]
# ).send()
# answer_message = await cl.Message(content="").send()
start_time = time.time()
whisper_input = (audio_buffer.name, audio_file, audio_mime_type)
transcription = await speech_to_text(whisper_input)
end_time = time.time()
print(f"Transcription took {end_time - start_time} seconds")
user_msg = cl.Message(
author="You",
type="user_message",
content=transcription
)
await user_msg.send()
await on_message(user_msg)
# images = [file for file in elements if "image" in file.mime]
# text_answer = await generate_text_answer(transcription, images)
# output_name, output_audio = await text_to_speech(text_answer, audio_mime_type)
# output_audio_el = cl.Audio(
# name=output_name,
# auto_play=True,
# mime=audio_mime_type,
# content=output_audio,
# )
# answer_message.elements = [output_audio_el]
# answer_message.content = transcription
# await answer_message.update()
if __name__ == "__main__":
from chainlit.cli import run_chainlit
run_chainlit(__file__)